Loading...
Search for: chatter-suppression
0.006 seconds

    Robust control of regenerative chatter in uncertain milling process with weak nonlinear cutting forces: A comparison with linear model

    , Article 9th IFAC Conference on Manufacturing Modelling, Management and Control, MIM 2019, 28 August 2019 through 30 August 2019 ; Volume 52, Issue 13 , 2019 , Pages 1102-1107 ; 24058963 (ISSN) Moradi, H ; Nouriani, A ; Vossoughi, G ; et al.; IFAC TC 1.3. Discrete Event and Hybrid Systems; IFAC TC 3.2. Computational Intelligence in Control; IFAC TC 4.3. Robotics; IFAC TC 5.1. Manufacturing Plant Control; International Federation of Automatic Control (IFAC) - Technical Committee on Manufacturing Modelling for Management and Control, TC 5.2 ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    For various types of materials, milling process is extensively used to generate complex shapes with high quality. During the process and to achieve high removal rate, precision and better surface finish, chatter suppression is of great importance. An extended model of the milling process is presented in which the cutting forces are described as a third-order nonlinear function of chip thickness. Uncertainties associated with the process and tool parameters are also included to achieve a more realistic model. To suppress regenerative chatter, an H∞ robust control is designed based on µ-synthesis with DK-iteration algorithm. The controller guarantees the robust stability and performance of... 

    Suppression of nonlinear regenerative chatter in milling process via robust optimal control

    , Article Journal of Process Control ; Volume 23, Issue 5 , 2013 , Pages 631-648 ; 09591524 (ISSN) Moradi, H ; Vossoughi, G ; Movahhedy, M. R ; Salarieh, H ; Sharif University of Technology
    2013
    Abstract
    During the milling process, self-excited vibration or chatter adversely affects tool life, surface quality and productivity rate. In this paper, nonlinear cutting forces of milling process are considered as a function of chip thickness with a complete third order polynomial (instead of the common linear dependency). An optimal control strategy is developed for chatter suppression of the system described through nonlinear delay differential equations. Counterbalance forces exerted by actuators in x and y directions are the control inputs. For optimal control problem, an appropriate performance index is defined such that the regenerative chatter is suppressed while control efforts are... 

    Tunable vibration absorber for improving milling stability with tool wear and process damping effects

    , Article Mechanism and Machine Theory ; Volume 52 , June , 2012 , Pages 59-77 ; 0094114X (ISSN) Moradi, H ; Movahhedy, M. R ; Vossoughi, G ; Sharif University of Technology
    2012
    Abstract
    This paper deals with the problem of chatter suppression in milling process in order to achieve higher precision, better surface quality and larger material removal rate (MRR). The peripheral milling process is modeled as a two degrees of freedom system and the effects of tool wear and process damping are considered. It is shown that when regenerative chatter develops, both tool wear and process damping act as stabilizing factors. For larger values of depth of cut and consequently higher MRR, tunable vibration absorbers (TVA) (in x-y directions) are designed to improve stability. An optimal algorithm is developed which determines the optimum values for absorbers' parameters. The effects of... 

    Vibration absorber design to suppress regenerative chatter in nonlinear milling process: Application for machining of cantilever plates

    , Article Applied Mathematical Modelling ; Volume 39, Issue 2 , 2015 , Pages 600-620 ; 0307904X (ISSN) Moradi, H ; Vossoughi, G ; Behzad, M ; Movahhedy, M. R ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    In this paper, a tunable vibration absorber (TVA) is designed to suppress regenerative chatter in milling of cantilever plates. In machining industry, the majority of work-piece materials or the interaction of work-piece/cutting tool causes the cutting forces to demonstrate nonlinear behavior. The application of TVA (as a semi-active controller) is investigated for the process with an extensive nonlinear model of cutting forces. Under regenerative chatter conditions, optimum values of the absorber position and its spring stiffness are found such that the plate vibration is minimized. For this purpose, an optimal algorithm is developed based on mode summation approach. Results are presented... 

    Adaptive sliding mode control of regenerative chatter and stability improvement in boring manufacturing process with model uncertainties

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 234, Issue 6 , 2020 , Pages 1171-1181 Moradian, H ; Abbasi, M. H ; Moradi, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In the machining processes, vibration suppression is crucial in order to achieve the high precision as well as high-quality surface and increase of the material removal rate. In this paper, an adaptive sliding mode control approach is presented to supress the chattering phenomenon in the boring process in the presence of model uncertainties and unmodeled dynamics. The boring bar is modeled as a cantilever Euler–Bernoulli beam, which is actuated by a piezo-actuator located at the bar's end. As a more realistic model, the cutting tool is modeled as an added mass at the bar's end. In order to derive the equations of motion, mode summation method with inclusion the first three modes of vibration... 

    Sliding mode control of the turning process for eliminating regenerative chatter in the presence of parametric uncertainties

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 3 , 2007 , Pages 449-456 ; 0791842975 (ISBN) Moradi, H ; Movahhedy, M. R ; Vossoughi, G. R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    Chatter suppression is an important topic in any type of machining process. In this paper, orthogonal cutting process is modeled as a single degree of freedom dynamic system. A nonlinear delay differential equation is presented that models flank wear of the tool. Uncertainties in cutting velocity, tool wear size and parameters of the dynamic model are included in the model of cutting process. The force provided by a piezo-actuator is taken as the control input of the system. A sliding mode control scheme is used and an effective control law is derived which suppresses the chatter vibration. Results for two distinct cases of a sharp tool and a worn tool are presented and compared which shows... 

    Global optimization and design of dynamic absorbers for chatter suppression in milling process with tool wear and process damping

    , Article Procedia CIRP ; Volume 21 , 2014 , Pages 360-366 ; ISSN: 22128271 Saadabad, N. A ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Abstract
    Peripheral milling is extensively used in manufacturing processes, especially in aerospace industries where end mills are used for milling of wing parts and engine components. The generation of complex shapes with high quality for various types of materials is the main advantage of milling in contrast to other machining processes. During the milling process, the occurrence of self-excited vibrations or chatter may cause reduction in material removal rate (MRR), damage to the tool and spindle bearing or may result in poor dimensional accuracy and surface finish of the work-piece. In this paper, milling process is modeled as two degrees of freedom (2DOF) system in which the tool wear and... 

    Spindle speed variation for regenerative chatter suppression in turning process with tool wear effect

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 4 , 2010 , Pages 619-626 ; 9780791849187 (ISBN) Haji Hajikolaei, K ; Vossoughi, G ; Rahaeifard, M ; Movahhedy, M ; ASME Turkey Section ; Sharif University of Technology
    Abstract
    Chatter suppression in machining processes results in more material removal rate, high precision and surface quality. In this paper, a single degree of freedom model of orthogonal turning process is used to set up the delay differential equation of motion with considering the tool wear effect as a contact force between the workpiece and tool flank surfaces. Sinusoidal spindle speed variations with different frequencies around the mean speed are modulated to disturb the regenerative mechanism. The optimal amplitudes of the speed modulations are found based on a genetic algorithm such that the input energy to the turning process is minimized. Results of the stability analysis and the... 

    Spindle speed variation and adaptive force regulation to suppress regenerative chatter in the turning process

    , Article Journal of Manufacturing Processes ; Volume 12, Issue 2 , August , 2010 , Pages 106-115 ; 15266125 (ISSN) Haji Hajikolaei, K ; Moradi, H ; Vossoughi, G ; Movahhedy, M. R ; Sharif University of Technology
    2010
    Abstract
    Chatter suppression in machining processes results in more material removal rate, high precision and surface quality. In this paper, two control strategies are developed to suppress chatter vibration in the turning process including a worn tool. In the first stage, a sinusoidal spindle speed variation around the mean speed is modulated to disturb the regenerative mechanism. The optimal amplitudes of the speed modulations are found based on a genetic algorithm such that the input energy to the turning process is minimized. In the second stage, to improve the response of the system which is associated with small ripples under the steady state condition, an adaptive controller is designed. In... 

    Using a vibration absorber to suppress chatter vibration in turning process with a worn tool

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 1, Issue PART B , August-September , 2010 , Pages 1335-1341 ; 9780791848982 (ISBN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedi, M. R ; Sharif University of Technology
    2010
    Abstract
    Dynamic vibration absorbers are used as semi-active controllers to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges and etc. One type of these absorbers is tunable vibration absorber (TVA). In this paper, regenerative chatter in an orthogonal turning process is suppressed using a (TVA). It is shown that TVA can modify the frequency response function of the cutting tool so as to improve cutting stability in turning process. In addition, tool wear is an important factor which works as a positive damping and helps the chatter suppression beside exertion of the TVA. Finally, using the SIMULINK Toolbox of... 

    Using a vibration absorber to suppress chatter vibration in turning process with a worn tool

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009, San Diego, CA ; Volume 1, Issue PARTS A AND B , 2009 , Pages 1335-1341 ; 9780791848982 (ISBN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedi, M. R ; Sharif University of Technology
    Abstract
    Dynamic vibration absorbers are used as semi-active controllers to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges and etc. One type of these absorbers is tunable vibration absorber (TVA). In this paper, regenerative chatter in an orthogonal turning process is suppressed using a (TVA). It is shown that TVA can modify the frequency response function of the cutting tool so as to improve cutting stability in turning process. In addition, tool wear is an important factor which works as a positive damping and helps the chatter suppression beside exertion of the TVA. Finally, using the SIMULINK Toolbox of... 

    Robust control strategy for suppression of regenerative chatter in turning

    , Article Journal of Manufacturing Processes ; Volume 11, Issue 2 , 2009 , Pages 55-65 ; 15266125 (ISSN) Moradi, H ; Movahhedy, M. R ; Vossoughi, G. R ; Sharif University of Technology
    Elsevier BV  2009
    Abstract
    Chatter suppression is of great importance in machining processes for achieving more material removal rate, high precision and surface quality. In this paper, an H∞ control algorithm is proposed for chatter suppression in the presence of tool wear and parameter uncertainties. Orthogonal turning process is modelled as a single degree of freedom model that includes the effect of tool flank wear. Control input of the system is the force provided by a piezo-actuator.The turning process model includes the uncertainties in cutting velocity, tool wear and dynamic model parameters. Using the μ-synthesis technique, an H∞ optimal controller is designed based on a DK-iteration algorithm. The... 

    A PID controller design to suppress chatter vibrations in the turning process studying its effect in nonlinear delayed process

    , Article 10th International Conference on Modern Circuits and Systems Technologies, MOCAST 2021, 5 July 2021 through 7 July 2021 ; 2021 ; 9781665418478 (ISBN) Khajoee, M ; Moradi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    High-quality, high-production-rate machining operations are significantly hindered by the regenerative chatter. Therefore, chatter suppression is of great significance; and active control is one of the best ways to curb it. In this paper, the orthogonal turning process is modeled as a single-degree-of-freedom system that includes the effect of tool wear; and described through a delay differential equation (DDE). Based on the model, stability lobes diagrams are obtained by the trial and error. The actuator force is the input for the control system and the tool vibration is the output. A classical PID controller is designed to improve the stability of the process and curb the self-excited... 

    Adaptive control of regenerative chatter in turning process with tool wear effect

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Vol. 10, Issue PART B , 2010 , pp. 1023-1030 ; ISBN: 9780791843833 Hajikolaei, K. H ; Moradi, H ; Vossoughi, G. R ; Alasty, A ; Movahhedi, M. R ; Sharif University of Technology
    Abstract
    Chatter suppression is of great importance for achieving high precision and surface quality in machining processes. A single degree of freedom model of orthogonal turning process is used to set up the nonlinear delay differential equation of motion. Tool wear effect is considered as the contact force between the workpiece and tool flank surfaces. Uncertainties in parameters of dynamic model and machining conditions are included in the model. An adaptive control strategy is applied for chatter suppression in cutting process. The force provided by a piezoactuator is the control input of the system. Results of stability analysis and adaptive control for two distinct cases of sharp and worn... 

    Stability improvement and regenerative chatter suppression in nonlinear milling process via tunable vibration absorber

    , Article Journal of Sound and Vibration ; Volume 331, Issue 21 , 2012 , Pages 4688-4690 ; 0022460X (ISSN) Moradi, H ; Bakhtiari Nejad, F ; Movahhedy, M. R ; Vossoughi, G ; Sharif University of Technology
    2012
    Abstract
    In this paper, a tunable vibration absorber set (TVAs) is designed to suppress regenerative chatter in milling process (as a semi-active controller). An extended dynamic model of the peripheral milling with closed form expressions for the nonlinear cutting forces is presented. The extension part of the cutting tool is modeled as an Euler-Bernoulli beam with in plane lateral vibrations (x-y directions). Tunable vibration absorbers in x-y directions are composed of mass, spring and dashpot elements. In the presence of regenerative chatter, coupled dynamics of the system (including the beam and x-y absorbers) is described through nonlinear delay differential equations. Using an optimal... 

    Adaptive control of regenerative chatter in turning process with tool wear effect

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; Volume 10, Issue PART B , 2010 , Pages 1023-1030 ; 9780791843833 (ISBN) Haji Hajikolaei, K ; Moradi, H ; Vossoughi, G. R ; Alasty, A ; Movahhedi, M. R
    Abstract
    Chatter suppression is of great importance for achieving high precision and surface quality in machining processes. A single degree of freedom model of orthogonal turning process is used to set up the nonlinear delay differential equation of motion. Tool wear effect is considered as the contact force between the workpiece and tool flank surfaces. Uncertainties in parameters of dynamic model and machining conditions are included in the model. An adaptive control strategy is applied for chatter suppression in cutting process. The force provided by a piezoactuator is the control input of the system. Results of stability analysis and adaptive control for two distinct cases of sharp and worn...