Loading...
Search for: circuit-faults
0.013 seconds
Total 50 records

    Switch level fault emulation

    , Article Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; Volume 2778 , 2003 , Pages 849-858 ; 03029743 (ISSN); 3540408223 (ISBN); 9783540408222 (ISBN) Miremadi, S. G ; Ejlali, A ; Sharif University of Technology
    Springer Verlag  2003
    Abstract
    The switch level is an abstraction level between the gate level and the electrical level, offers many advantages. Switch level simulators can reliably model many important phenomena in CMOS circuits, such as bi-directional signal propagation, charge sharing and variations in driving strength. However, the fault simulation of switch level models is more time-consuming than gate level models. This paper presents a method for fast fault emulation of switch level circuits using FPGA chips. In this method, gates model switch level circuits and we can emulate mixed gate-switch level models. By the use of this method, FPGA chips can be used to accelerate the fault injection campaigns into switch... 

    A series stacked IGBT switch to be used as a fault current limiter in HV high-power supplies

    , Article IEEE Journal of Emerging and Selected Topics in Power Electronics ; Volume 9, Issue 5 , 2021 , Pages 6300-6314 ; 21686777 (ISSN) Mohsenzade, S ; Zarghani, M ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    The safe operating condition for the vacuum tubes is very important and critical since they are very expensive and delicate. Providing limited short circuit energy for the vacuum tube and fast transferring from the short circuit to the nominal operation state are absolutely necessary. Extant protection strategies threat the availability of the vacuum tubes. In addition, they cannot completely protect the tube due to the delay of the fault detection system. This article proposes a high voltage (HV) short circuit fault current limiter which can limit the short circuit energy of the system inherently. The proposed structure activates automatically when the current exceeds the predetermined... 

    A comprehensive analysis of short-circuit fault in wound-rotor resolvers

    , Article IEEE Transactions on Vehicular Technology ; Volume 69, Issue 12 , December , 2020 , Pages 14884 - 14892 Lasjerdi, H ; Nasiri Gheidari, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper presents a detailed analysis of short circuit fault (SCF) in wound rotor (WR) resolvers. For this purpose, an analytical model based on winding function (WF) method is developed considering the stator and rotor windings fault, the severity of the fault, the phase of the stator faulty winding, and the tooth of shorted turns. The proposed model leads to a comprehensive understanding of the SCF behavior of WR resolvers and also leads to define proper fault detecting signatures. All the predictions are verified by time stepping finite element analysis as well as the experimental tests on two prototyped resolvers. IEEE  

    Control of grid-following inverters under unbalanced grid conditions

    , Article IEEE Transactions on Energy Conversion ; Volume 35, Issue 1 , 2020 , Pages 184-192 Zarei, S. F ; Mokhtari, H ; Ghasemi, M. A ; Peyghami, S ; Davari, P ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper proposes a new control scheme to eliminate the 3rd harmonic in the output currents of grid-following inverters under unbalanced grid conditions. Unbalanced grids adversely affect the performance of grid-following inverters due to the oscillations appearing on the DC-link voltage with a frequency twice the line frequency. The paper is based on instantaneous active reactive control (IARC) technique due to its advantages over other existing methods. However, the presence of severe asymmetrical 3rd harmonic distortions in the inverter output currents is the main challenge with IARC method, which impairs the power quality requirements. This paper enhances the IARC scheme by proposing a... 

    Improving the accuracy of wound-rotor resolvers under inter-turn short circuit faults

    , Article IEEE Sensors Journal ; Volume 21, Issue 5 , 2021 , Pages 5944-5951 ; 1530437X (ISSN) Lasjerdiand, H ; Tootoonchian, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    The performance of the resolver as a position sensor is significantly influenced by electrical and mechanical faults. Among different faults, short circuit in the stator windings has more destructive effect than others on accuracy of resolver. Furthermore, due to thin wires of the stator it is highly likely to occur. Therefore, in this paper a robust design is proposed for wound-rotor resolvers to not only suppress the influence of short circuit fault in the stator/rotor winding, but also improve the accuracy of the sensor under mechanical faults. The effectiveness of the proposed robust design is demonstrated by an analytical model based on winding function method and then approved by time... 

    Experimental evaluation of Master/Checker architecture using power supply- and software-based fault injection

    , Article Proceedings - 10th IEEE International On-Line Testing Symposium, IOLTS 2004, Madeira Island, 12 July 2004 through 14 July 2004 ; 2004 , Pages 239-244 ; 0769521800 (ISBN); 9780769521800 (ISBN) Rajabzadeh, A ; Miremadi, S. G ; Mohandespour, M ; Sharif University of Technology
    2004
    Abstract
    This paper presents an experimental evaluation of the effectiveness of the Master/Checker (M/C) architecture in a 32-bit Pentium® processor system using both power-supply disturbance (PSD) fault injection and software-implemented fault injection (SWIFI) methods. A total of 6000 faults were injected in the Master processor to measure the error detection coverage of the Checker processor. The results of the experiments with PSD fault injection show that the error detection coverage of the M/C architecture is about 66.13%, which is not quite effective. This low coverage depends on the high rate of Master processor hangs because of voltage fluctuation. The coverage increased to about 99.73% when... 

    IGBT open-circuit fault diagnosis in a Quasi-Z-source inverter

    , Article IEEE Transactions on Industrial Electronics ; Volume 66, Issue 4 , 2019 , Pages 2847-2856 ; 02780046 (ISSN) Yaghoubi, M ; Shokrollahi Moghani, J ; Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, a fast and practical method is proposed for open-circuit (OC) fault diagnosis (FD) in a three-phase quasi-Z-source inverter (q-ZSI). Compared to the existing fast OC FD techniques in three-phase voltage-source inverters (VSIs), this method is more cost-effective since no ultra-fast processor or high-speed measurement is required. Additionally, the method is independent of the load condition. The proposed method is only applicable to Z-source family inverters and is based on observing the effect of shoot-through (SH) intervals on the system variables during switching periods. The proposed algorithm includes two consecutive stages: OC detection and fault location identification.... 

    Reinforcing fault ride through capability of grid forming voltage source converters using an enhanced voltage control scheme

    , Article IEEE Transactions on Power Delivery ; Volume 34, Issue 5 , 2019 , Pages 1827-1842 ; 08858977 (ISSN) Zarei, S. F ; Mokhtari, H ; Ghasemi, M. A ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Medium power distributed energy resources (DERs) are commonly connected to medium voltage distribution systems via voltage source converters (VSCs). Several guidelines and standards have been developed to establish the needed criteria and requirements for DERs interconnections. In this respect, it is preferred to reinforce the VSC fault ride through (FRT) capability, which considerably minimizes the DG outage period and reconnection time and results in a resilient system against short circuits. Considering the significant number of asymmetrical faults in distribution systems, the VSC response in such conditions must be investigated, and consequently, its FRT capability must be reinforced. In... 

    IGBT Open-circuit fault diagnosis in a quasi-z-source inverter

    , Article IEEE Transactions on Industrial Electronics ; Volume 66, Issue 4 , 2019 , Pages 2847-2856 ; 02780046 (ISSN) Yaghoubi, M ; Moghani, J. S ; Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a fast and practical method is proposed for open-circuit (OC) fault diagnosis (FD) in a three-phase quasi-Z-source inverter (q-ZSI). Compared with the existing fast OC FD techniques in three-phase voltage source inverters, this method is more cost-effective since no ultrafast processor or high-speed measurement is required. Additionally, the method is independent of the load condition. The proposed method is only applicable to Z-source family inverters and is based on observing the effect of shoot-through intervals on the system variables during switching periods. The proposed algorithm includes two consecutive stages: OC detection and fault location identification. When both... 

    Detecting the location of short-circuit faults in active distribution network using pmu-based state estimation

    , Article IEEE Transactions on Smart Grid ; Volume 11, Issue 2 , 2020 , Pages 1396-1406 Gholami, M ; Abbaspour, A ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    With the rapid advancement of phasor measurement units (PMUs) technology, system operators in different level of power systems have access to new and abundant measurements. Taking into account these measurements in active distribution systems (ADNs), a new algorithm for short-circuit fault detection and identification based on state estimation (SE) is introduced in this paper. In this regard, as the first step, traditional SE process is revised to be compatible with fault conditions. Then, a fault location algorithm (FLA) based on the revised SE (RDSSE) is presented which attends to detect the location of fault after diagnosing faulted zone. For this purpose, current and voltage... 

    Fast fault detection method for modular multilevel converter semiconductor power switches

    , Article IET Power Electronics ; Volume 9, Issue 2 , 2016 , Pages 165-174 ; 17554535 (ISSN) Haghnazari, S ; Khodabandeh, M ; Zolghadri, M. R ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    This study proposes a new fault detection method for modular multilevel converter (MMC) semiconductor power switches. While in common MMCs, the cells capacitor voltages are measured directly for control purposes, in this study voltage measurement point changes to the cell output terminal improving fault diagnosis ability. Based on this measurement reconfiguration, a novel fault detection algorithm is designed for MMCs semiconductor power switches. The open circuit and short circuit faults are detected based on unconformity between modules output voltage and switching signals. Simulation and experimental results confirm accurate and fast operation of the proposed method in faulty cell... 

    Sectionalizing switch placement in distribution networks considering switch failure

    , Article IEEE Transactions on Smart Grid ; Volume 10, Issue 1 , 2019 , Pages 1080-1082 ; 19493053 (ISSN) Farajollahi, M ; Fotuhi Firuzabad, M ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Sectionalizing switches play a crucial role in enhancing service reliability to the end users of distribution networks. However, they might encounter failures, thereby causing interruptions in the networks. The existing switch placement models consider only the pros of switches in improving service reliability, while they fail to deem switches cons in possible failures and thus increasing system interruptions. This letter intends to show the importance of switch failure in the switch placement problem and the extent to which switch failure alters the switches allocation in a network. To do so, we develop a novel model based on mixed integer programming format to integrate the impacts of... 

    Sectionalizing switch placement in distribution networks considering switch failure

    , Article IEEE Transactions on Smart Grid ; Volume 10, Issue 1 , 2019 , Pages 1080-1082 ; 19493053 (ISSN) Farajollahi, M ; Fotuhi Firuzabad, M ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Sectionalizing switches play a crucial role in enhancing service reliability to the end users of distribution networks. However, they might encounter failures, thereby causing interruptions in the networks. The existing switch placement models consider only the pros of switches in improving service reliability, while they fail to deem switches cons in possible failures and thus increasing system interruptions. This letter intends to show the importance of switch failure in the switch placement problem and the extent to which switch failure alters the switches allocation in a network. To do so, we develop a novel model based on mixed integer programming format to integrate the impacts of... 

    Accurate fault location algorithm for series compensated transmission lines

    , Article IEEE Transactions on Power Delivery, Piscataway, NJ, United States ; Volume 15, Issue 3 , 2000 , Pages 1027-1033 ; 08858977 (ISSN) Sadeh, J ; Hadjsaid, N ; Ranjbar, A. M ; Feuillet, R ; Sharif University of Technology
    IEEE  2000
    Abstract
    In this paper, an accurate fault location algorithm for series compensated power transmission lines is presented. Distributed time domain model is used for modeling of the transmission lines. The algorithm makes use of two subroutines for estimation of the fault distance - one for faults behind the series capacitors and another one for faults in front of the series capacitors. Then a special procedure to select the correct solution is utilized. Samples of voltages and currents at both ends of the line are taken synchronously and used to calculate the location of the fault. The proposed algorithm is independent of fault resistance and does not require any knowledge of source impedance. The... 

    Fast short circuit power switch fault detection in cascaded H-bridge multilevel converter

    , Article IEEE Power and Energy Society General Meeting ; 2013 ; 19449925 (ISSN); 9781479913039 (ISBN) Shahbazi, M ; Zolghadri, M. R ; Poure, P ; Saadate, S ; Sharif University of Technology
    2013
    Abstract
    Multilevel converters are being widely used in a large number of power electronics applications. Due to the increased number of switching devices, they are more likely to have faults in their switches than the conventional converters. In order to have a balanced operation after a short circuit power switch fault occurrence, it is necessary to detect the fault location. In this paper, a fast power switch fault detection method is presented to identify the fault location. This method only needs one additional voltage sensor per phase, and is faster compared to most of the existing methods. Also it is easy for implementation on a FPGA chip. The proposed method is verified by computer... 

    Fault analysis on AC railway supply system

    , Article 6th Annual International Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2015, 3 February 2015 through 4 February 2015 ; February , 2015 , Pages 567-572 ; 9781479976539 (ISBN) Noroozi, N ; Mokhtari, H ; Zolghadri, M. R ; Khodabandeh, M ; Abazai, A ; Seyyedi Khakshani, R ; Mazaheri, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    A short circuit fault in an AC railway supply system could have undesired consequences; including high-amplitude current flow in the power path, the rail potential rise in the fault vicinity. This paper studies the problem of the rail voltage rise in Tehran-Karaj railway system by the use of a steady state circuit model for the AC autotransformer during a phase-to-ground fault. By using this model, all the currents and voltages of the system can be easily calculated for all possible short circuit fault locations. With the help of the derived analytical model, one can also predict the possible fault locations which may cause the protection system to operate. The estimation of the system... 

    Fast and simple open-circuit fault detection method for interleaved DC-DC converters

    , Article 7th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2016, 16 February 2016 through 18 February 2016 ; 2016 , Pages 440-445 ; 9781509003754 (ISBN) Shahbazi, M ; Zolghadri, M. R ; Ouni, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Interleaved DC-DC boost converters are interesting choices in applications like fuel cells and photovoltaic systems. Although this converter offers low current ripple, but an open-circuit switch fault can lead to unacceptable current ripples. In this paper, a very fast and simple method is proposed to detect an open-circuit switch fault and its location. This method doesn't need any additional sensors, is efficient in CCM and DCM modes of operation, and can detect the fault in less than one switching period. Moreover, this method is suitable for implementation on an FPGA, due to the use of simple math and state machine blocks. Simulations are carried out to validate the effectiveness of this... 

    Reinforcing fault ride through capability of grid forming voltage source converters using an enhanced voltage control scheme

    , Article IEEE Transactions on Power Delivery ; 2018 ; 08858977 (ISSN) Zarei, F ; Mokhtari, H ; Ghasemi, M. A ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Medium power distributed energy resources (DERs) are commonly connected to medium voltage distribution systems via voltage source converters (VSCs). Several guidelines and standards have been developed to establish the needed criteria and requirements for DERs interconnections. In this respect, it is preferred to reinforce the VSC fault ride through (FRT) capability, which considerably minimizes the DG outage period and reconnection time and results in a resilient system against short circuits. Considering the significant number of asymmetrical faults in distribution systems, the VSC response in such conditions must be investigated, and consequently, its FRT capability must be reinforced. In... 

    Simultaneous placement of fault indicator and sectionalizing switch in distribution networks

    , Article IEEE Transactions on Smart Grid ; 2018 ; 19493053 (ISSN) Farajollahi, M ; Fotuhi Firuzabad, M ; Safdarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Automation systems provide substantial improvement in service reliability through speeding up fault management procedure. However, this is at expense of high investments whose justification needs thorough cost/worth analyses. This paper introduces a mathematical model to optimally place automation system devices within distribution networks. The model establishes a trade-off between service reliability improvements and the relevant costs. Among different automation system devices, fault indicators and remote controlled switches are considered here. Also, the impact of manual switches is regarded since their number and location significantly affect the solution of the placement problem. The... 

    A fault-tolerant strategy for three-phase dual active bridge converter

    , Article 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, 12 February 2019 through 14 February 2019 ; 2019 , Pages 253-258 ; 9781538692547 (ISBN) Davoodi, A ; Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Due to several advantages, three-phase Dual Active Bridge (DAB) converter is widely used in numerous applications nowadays. On the other hand, this converter is very vulnerable to Transistor Open-Circuit Fault (TOCF). Therefore, a fault-tolerant (FT) scheme has been proposed in this paper to solve the problem. First, normal and faulty conditions are investigated, and according to the results, a fault-diagnosis (FD) approach is introduced. Using the outcomes of FD unit, a new post-fault strategy is proposed for the converter. The FD method is based on the DC component of transformer phase currents, and the basis of FT technique is shedding the faulty phase. Some benefits of the proposed...