Loading...
Search for: circumferential-strain
0.01 seconds

    The importance of fluid-structure interaction simulation for determining the mechanical stimuli of endothelial cells and atheroprone regions in a coronary bifurcation

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 228-237 ; 10263098 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    The function and morphology of Endothelial Cells (ECs) play a key role in atherosclerosis. The mechanical stimuli of ECs, such as Wall Shear Stress (WSS) and arterial wall strain, greatly inuence the function and morphology of these cells. The present article deals with computations of these stimuli for a 3D model of a healthy coronary artery bifurcation. The focus of the study is to propose an accurate method for computations of WSS and strains. Two approaches are considered: Coupled simultaneous simulation of arterial wall and blood flow, called fluid-Structure Interaction (FSI) simulation, and decoupled, which simulates each domain (fluid and solid domain) separately. The study... 

    Three-dimensional elasticity analysis of functionally graded rotating cylinders with variable thickness profile

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 226, Issue 3 , 2012 , Pages 585-594 ; 09544062 (ISSN) Ghafoori, E ; Asghari, M ; Sharif University of Technology
    Abstract
    A three-dimensional elasticity solution for the analysis of functionally graded rotating cylinders with variable thickness profile is proposed. The axisymmetric structure has been divided in several divisions in the radial direction. Constant mechanical properties and thickness profile are assumed within each division. The solution is considered for four different thickness profiles, namely constant, linear, concave, and convex. It is shown that the linear, concave, and convex thickness profiles have smaller stress values compared to a constant thickness profile. The effects of various grading indices as well as different boundary conditions, namely solid, free-free hollow and fixed-free... 

    Numerical simulations of haemodynamic factors and hyperelastic Circumferential Strain/Stress in the ideal and healthy-patient-specific carotid bifurcations for different rheological models

    , Article International Journal of Biomedical Engineering and Technology ; Volume 6, Issue 4 , 2011 , Pages 387-412 ; 17526418 (ISSN) Toloui, M ; Nikparto, A ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Abstract
    To explore the role of hemodynamic in the initiation and progression of stenosis in carotid artery bifurcation, a Computational Fluid Dynamics (CFD) technique is applied. The effect of four rheology models is investigated as well as various mechanical phenomena. In this study, a Finite Element Method (FEM) was applied to simulate the physiologic Circumferential Strain/Stress (CS) Meanwhile, to investigate the role of vessel wall flexibility, a Fluid-Structure Interaction (FSI) analysis was applied. It was concluded that velocity profiles and WSS show sensitivity to arterial wall stiffening while shear thinning models do not have a dominant effect on the flow field  

    Fsi simulation of a healthy coronary bifurcation for studying the mechanical stimuli of endothelial cells under different physiological conditions

    , Article Journal of Mechanics in Medicine and Biology ; Volume 15, Issue 5 , October , 2015 ; 02195194 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    Atherosclerosis is a world-spread and well-known disease. This disease strongly relates to the endothelial cells (ECs) function. Normally, the endothelial cells align in the flow direction in the atheroprotected sites; however, in the case of atheroprone sites these cells orient randomly. The mechanical stimuli such as wall shear stress and strains could determine the morphology and function of the endothelial cells. In the present study, we numerically simulated the left main coronary artery (LCA) and its branches to left anterior descending (LAD) and left circumflex coronary (LCX) artery using fluid-structure interaction (FSI) modeling. The results were presented as longitudinal and...