Loading...
Search for: climatic-conditions
0.005 seconds

    Interaction of glazing parameters, climatic condition and interior shadings: performing energy and cost analysis in a residential building in Iran

    , Article Energy Efficiency ; Volume 13, Issue 1 , 21 December , 2020 , Pages 159-176 Yousefi, F ; Gholipour, Y ; Saboohi, Y ; Yan, W ; Sharif University of Technology
    Springer  2020
    Abstract
    In this paper, the interaction between various window specifications and different climate conditions is investigated. For this purpose, simultaneous effects of several aspects including glazing system, glass type, filling gas, glass thickness, window frame fraction, and interior shading are considered under three different climatic conditions. To evaluate the energy performance of various considered alternatives, the energy simulation of a base case building is evaluated in a computer environment. Using the validated model, the energy analysis is quantitatively performed, and cost-benefit analyses from the viewpoints of both residents and government are carried out based on the domestic and... 

    Identification and qualification of health, safety and environmental risks on construction of projects in Iranian petroleum industry

    , Article Proceedings, Annual Conference - Canadian Society for Civil Engineering Volume 4, 2012, Pages 3301-3310 ; Volume 4 , 2012 , Pages 3301-3310 ; 9781622768004 (ISBN) Mohammadi, P ; Heshmati, E ; Sharif, H ; Ahmadian Fard Fini, A. R ; Sharif University of Technology
    2012
    Abstract
    Iran is engaged in a long-term program to improve and strengthen its position among producers of petroleum in the world. In this regard, many projects are planned and executed in different fields related to oil and gas industry. Prior to investment in new projects, it is essential to understand and manage major corporate risks and their related consequences. Due to nature of petroleum industry, Health, Safety and Environmental (HSE) issues are associated with such projects and have always been matters of concern. This paper directs readers towards the integrated HSE approach from concept to affect project construction phase. The process of oil production includes exploration, extraction and... 

    Climate change and hydropower in Iran's Karkheh River Basin

    , Article World Environmental and Water Resources Congress 2012: Crossing Boundaries, Proceedings of the 2012 Congress ; 2012 , Pages 3341-3349 ; 9780784412312 (ISBN) Abrishamchi, A ; Jamali, S ; Madani, K ; Hadian, S ; Sharif University of Technology
    ASCE  2012
    Abstract
    The Karkheh River Basin is one of the Iranian river basins with a high potential for hydropower production. While Iran is actively constructing large dams in the Basin for hydropower production, climate change is putting the future status of hydropower production in the Basin in question. Using MODSIM, sensitivity of the Basin to climate change is investigated by estimating stream flow changes and the resulting impacts on hydropower production for different climate change scenarios. Results indicate considerable reductions in annual and seasonal hydropower production due to the expected dry climatic conditions under the existing operation rules. Findings highlight the necessity for revision... 

    Investigation of the effect of walkway orientation on natural ventilation

    , Article Scientia Iranica ; Volume 23, Issue 2 , 2016 , Pages 678-684 ; 10263098 (ISSN) Rismanian, M ; Forughi, A. F ; Vesali, F ; Mahmoodabadi, M. S ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Proper orientation of walkways, based on regional winds and local shade, provides good control over walkway ventilation. The architecture of the old town of Sirjan had experimentally orientated the city's walkways in such a manner that the shadows in the walkways produced the maximum possible natural ventilation in this hot and dry town. This study has focused on the optimum design of Sirjan city considering a natural ventilation mechanism. At first, a typical walkway with certain geometric parameters is considered. Then, considering the symmetry of the shadows cast in the walkway, the natural ventilation rate is investigated at 7 different angles and at 15° intervals. The problem is modeled... 

    A comprehensive comparative investigation on solar heating and cooling technologies from a thermo-economic viewpoint—A dynamic simulation

    , Article Energy Science and Engineering ; Volume 9, Issue 5 , 2021 , Pages 724-742 ; 20500505 (ISSN) Jafari Mosleh, H ; Behnam, P ; Abbasi Kamazani, M ; Mohammadi, O ; Kavian, S ; Ahmadi, P ; Rosen, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    The yearly thermo-economic performance is dynamically investigated for three solar heating and cooling systems: solar heating and absorption cooling (SHAC), solar heating and ejector cooling (SHEC), and heating and solar vapor compression cooling (HSVC). First, the effects of important design parameters on the thermo-economic performance of the systems to supply the heating and cooling loads of the building are evaluated. The systems are parametrically analyzed with the weather conditions of Tehran, Iran. The results show that the life cycle costs (LCC) of the SHAC and HSVC systems are alike and much lower than those of the SHEC system. The HSVC system exhibits the best performance from... 

    An integrated virtual environment for feasibility studies and implementation of aerial MonoSLAM

    , Article Virtual Reality ; Volume 16, Issue 3 , September , 2012 , Pages 215-232 ; 13594338 (ISSN) Amiri Atashgah, M. A ; Malaek, S. M. B ; Sharif University of Technology
    2012
    Abstract
    This work presents a complete framework of an integrated aerial virtual environment (IAVE), which could effectively help implementing MonoSLAM (single-camera simultaneous localization and mapping) on an aerial vehicle. The developed system allows investigating different flight conditions without using any preloaded maps or predefined features. A 3D graphical engine integrated with a full 6 DOF aircraft dynamic simulator together with its trajectory generator completes the package. The 3D engine generates and accumulates real-time images of a general camera installed on the aerial vehicle. We effectively exploit C++ to develop the 3D graphics engine (3DGE) and all its associated visual... 

    The impact of climate condition on the optimal size of direct coupled photovoltaic-electrolyzer systems

    , Article Simulation Series, 26 July 2015 through 29 July 2015 ; Volume 47, Issue 10 , July , 2015 , Pages 224-229 ; 07359276 (ISSN) Sayedin, F ; Maroufmashat, A ; Sattari khavas S ; Elkamel, A ; Aladwani, S ; Sharif University of Technology
    The Society for Modeling and Simulation International  2015
    Abstract
    Solar energy exists extensively in all parts of the world. However the intermittency of solar energy presents critical challenges to PV system. The intermittency can be covered by storing solar energy in chemical bonds such as hydrogen. This process can be performed by photovoltaic powered electrolysis of water. The energy transfer efficiency between PV and electrolyzer is subject to the distance between maximum power points (MPP) of PV module and operating points. The operating points can be adjusted by optimizing the design parameters of the electrolyzer but the maximum power points are function of PV module characteristics, solar radiation and ambient temperature. Therefore the weather... 

    Examination of a novel solar still equipped with evacuated tube collectors and thermoelectric modules

    , Article Desalination ; Volume 382 , 2016 , Pages 21-27 ; 00119164 (ISSN) Behshad Shafii, M ; Shahmohamadi, M ; Faegh, M ; Sadrhosseini, H ; Sharif University of Technology
    Elsevier  2016
    Abstract
    In this article, a novel solar still which is equipped with thermoelectric modules to utilize the heat of vapor condensation is experimentally investigated. The use of thermoelectric modules as devices for generating electricity from the temperature difference between two environments (hot vapor steam and cold ambient air) as well as taking outstanding advantages of evacuated tubes as collectors with high performances in adverse climatic conditions, led to utilizing of the energy dissipated due to vapor condensation and a considerable increase in the performance of the system. The effect of using the generated electricity to operate a small propeller fan for inducing forced convection was... 

    On the comprehensive parametrization of the photovoltaic (pv) cells and modules

    , Article IEEE Journal of Photovoltaics ; Volume 7, Issue 1 , 2017 , Pages 250-258 ; 21563381 (ISSN) Hejri, M ; Mokhtari, H ; Sharif University of Technology
    IEEE Electron Devices Society  2017
    Abstract
    In the classical parametrization of the single-diode model of photovoltaic (PV) cells and modules based on the datasheet values, first, the values of the five unknown parameters of the PV model are extracted via the values of the open-circuit voltage Voc, the short-circuit current Isc, and the voltage and current at the maximum power point Vm, Im at standard test conditions (STC). Next, using some translational formulas, the STC values of the unknown parameters are projected to the new climatic conditions other than STC. A major problem of this approach is to determine the translational formulas of the five unknown parameters of the single-diode model as a function of both temperature and... 

    Different operational alternatives of aquifer thermal energy storage system for cooling and heating of a residential complex under various climatic conditions in Iran

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1281-1292 ; 10263098 (ISSN) Ghaebi, H ; Bahadori, M. N ; Saidi, M. H ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this research, a confined aquifer with low groundwater flow was considered to meet the cooling and heating requirements of residential complexes. The complexes were located in the cities of Ahvaz, Ardabil, Bandar Abbas, Esfahan, Kerman, Rasht, Tehran, and Zahedan. The complex in Ardabil mostly required heating, the ones in Ahvaz and Bandar Abbas mostly required cooling, and the complexes in other cities required both heating and cooling. Four different alternatives of Aquifer Thermal Energy Storage (ATES) were analyzed in this study. These alternatives consisted of using ATES: 1) alone for cooling, 2) coupled with a conventional refrigeration system or a chiller for cooling, 3) by... 

    Different operational alternatives of aquifer thermal energy storage system for cooling and heating of a residential complex under various climatic conditions in Iran

    , Article Scientia Iranica ; Volume 26, Issue 3B , 2019 , Pages 1281-1292 ; 10263098 (ISSN) Ghaebi, H ; Bahadori, M. N ; Saidi, M. H ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this research, a confined aquifer with low groundwater flow was considered to meet the cooling and heating requirements of residential complexes. The complexes were located in the cities of Ahvaz, Ardabil, Bandar Abbas, Esfahan, Kerman, Rasht, Tehran, and Zahedan. The complex in Ardabil mostly required heating, the ones in Ahvaz and Bandar Abbas mostly required cooling, and the complexes in other cities required both heating and cooling. Four different alternatives of Aquifer Thermal Energy Storage (ATES) were analyzed in this study. These alternatives consisted of using ATES: 1) alone for cooling, 2) coupled with a conventional refrigeration system or a chiller for cooling, 3) by... 

    Effects of water level decline in Lake Urmia, Iran, on local climate conditions

    , Article Water (Switzerland) ; Volume 12, Issue 8 , 2020 Dehghanipour, A. H ; Moshir Panahi, D ; Mousavi, H ; Kalantari, Z ; Tajrishy, M ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Lake Urmia in northwestern Iran is the largest lake in Iran and the second largest saltwater lake in the world. The water level in Lake Urmia has decreased dramatically in recent years, due to drought, climate change, and the overuse of water resources for irrigation. This shrinking of the lake may affect local climate conditions, assuming that the lake itself affects the local climate. In this study, we quantified the lake's impact on the local climate by analyzing hourly time series of data on climate variables (temperature, vapor pressure, relative humidity, evaporation, and dewpoint temperature for all seasons, and local lake/land breezes in summer) for the period 1961-2016. For this, we... 

    Optimal design for solar greenhouses based on climate conditions

    , Article Renewable Energy ; Volume 145 , 2020 , Pages 1255-1265 Esmaeli, H ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Greenhouses require energy in order to provide a proper environment for crop production. Utilizing solar energy in solar greenhouses is a sustainable solution to face this problem. In this study, a solar greenhouse concept is considered, and a dynamic thermal model is developed to predict the inside air temperature. The model is integrated into an optimization procedure to find the optimal greenhouse design that has the best thermal performance by adjusting its structural parameters. This optimization procedure provides a tool to find the optimal solar greenhouse design for each climate condition and predict its performance. For instance, for the case study of Tehran (Iran), the optimal... 

    A comprehensive comparative investigation on solar heating and cooling technologies from a thermo-economic viewpoint—A dynamic simulation

    , Article Energy Science and Engineering ; December , 2020 Jafari Mosleh, H ; Behnam, P ; Abbasi Kamazani, M ; Mohammadi, O ; Kavian, S ; Ahmadi, P ; Rosen, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    The yearly thermo-economic performance is dynamically investigated for three solar heating and cooling systems: solar heating and absorption cooling (SHAC), solar heating and ejector cooling (SHEC), and heating and solar vapor compression cooling (HSVC). First, the effects of important design parameters on the thermo-economic performance of the systems to supply the heating and cooling loads of the building are evaluated. The systems are parametrically analyzed with the weather conditions of Tehran, Iran. The results show that the life cycle costs (LCC) of the SHAC and HSVC systems are alike and much lower than those of the SHEC system. The HSVC system exhibits the best performance from... 

    Distilled water production with combination of solar still and thermosyphon heat pipe heat exchanger coupled with indirect water bath heater – Experimental study and thermoeconomic analysis

    , Article Applied Thermal Engineering ; Volume 176 , 2020 Rastegar, S ; Kargarsharifabad, H ; Rahbar, N ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The aim of this study is to provide a solution for supplying distilled water used in indirect water bath heaters in the pressure reduction stations. A particular type of distilled water production system consists of a typical solar still and a heat pipe heat exchanger was constructed for recovering heat from the exhaust of an indirect gas heater. The system was tested under the climatic conditions of Semnan-Iran. Experimental results showed that in active type, the average daily production rate of distilled water would be 2.06 times higher than passive type. Also, in the proposed system, the average daily energy efficiency and the exergy efficiency would be 65.5% and 41% higher than the... 

    An integrated dynamic model for evaluating the influence of ground to air heat transfer system on heating, cooling and CO2 supply in Greenhouses: Considering crop transpiration

    , Article Renewable Energy ; Volume 173 , 2021 , Pages 42-56 ; 09601481 (ISSN) Tahery, D ; Roshandel, R ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Nowadays, one of the most important challenges in developing greenhouses is meeting their energy demand. The other challenge is the high water consumption of evaporative-cooling systems in arid and semi-arid regions. In this study, a integrated dynamic model is developed to determine the greenhouse relative humidity, carbon dioxide, and temperature, considering transpiration. The model is applied to a greenhouse utilizing a ground to air heat transfer system, located in the Alborz province of Iran and the results are validated with experimental data. Energy and water performance of the greenhouse are evaluated for the case study greenhouse. Then, the model is applied to a greenhouse (similar... 

    Investigating performance of a new design of forced convection solar dryer

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Rezaei, M ; Sefid, M ; Almutairi, K ; Mostafaeipour, A ; Ao, H. X ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Chowdhury, S ; Techato, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Drying is a common practice for delaying deterioration, preserving quality, and easier prolonged storage of agricultural products. According to the climatic and geographical conditions of Arsanjan County, Fars, Iran. So far, many studies have been conducted on the design and use of various barriers on absorber plates with the aim of increasing heat exchange and subsequently increasing the efficiency of air heaters and solar dryers. However, the effect of using the metal of the sewing machine bobbin on the performance of these dryers has not been studied yet. Therefore, in this study, for the first time, this metal and also pipes containing PCM (phase change material) were used as a barrier... 

    Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature

    , Article Computers and Electronics in Agriculture ; Volume 124 , 2016 , Pages 150-160 ; 01681699 (ISSN) Nahvi, B ; Habibi, J ; Mohammadi, K ; Shamshirband, S ; Al Razgan, O. S ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    In this study, the self-adaptive evolutionary (SaE) agent is employed to structure the contributing elements to process the management of extreme learning machine (ELM) architecture based on a logical procedure. In fact, the SaE algorithm is utilized for possibility of enhancing the performance of the ELM to estimate daily soil temperature (ST) at 6 different depths of 5, 10, 20, 30, 50 and 100 cm. In the developed SaE-ELM model, the network hidden node parameters of the ELM are optimized using SaE algorithm. The precision of the SaE-ELM is then compared with the ELM model. Daily weather data sets including minimum, maximum and average air temperatures (Tmin, Tmax and Tavg), atmospheric... 

    Directional dependence of extreme metocean conditions for analysis and design of marine structures

    , Article Applied Ocean Research ; Volume 100 , 2020 Haghayeghi, Z. S ; Imani, H ; Karimirad, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Marine structures are typically sensitive to the direction of wind and waves, especially in extreme metocean conditions. The extreme metocean conditions and their associated predicted directions are not easily reachable from traditional design methodologies. In this research, the most probable combinations of different extreme metocean conditions along with their associated direction are predicted for the HyWind Scotland wind farm, Scotland. To achieve this, the Hierarchical Bayesian Modeling approach is applied to define the Joint Probability Distribution Function (JPDF) of four combinations of metocean parameters, including wave direction, wind direction and wind-wave misalignment. The... 

    Land subsidence: a global challenge

    , Article Science of the Total Environment ; Volume 778 , 2021 ; 00489697 (ISSN) Bagheri Gavkosh, M ; Hosseini, M ; Ataie Ashtiani, B ; Sohani, Y ; Ebrahimian, H ; Morovat, F ; Ashrafi, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This study presents a comprehensive review of the Land subsidence (LS) cases, as a worldwide environmental, geological, and global geohazard concern. Here, 290 case studies around the world mostly conducted in large metropolitan cities (e.g. Bangkok, Beijing, California, Houston, Mexico City, Shanghai, Jakarta, and Tokyo) in 41 countries were collected. The spatial distribution of LS characteristics (e.g. intensity, magnitude, and affected area), impacts, and influential factors are scrutinized. Worldwide attempts to remedy the crisis of LS were also investigated in this review. It is shown that the coastal plains and river deltaic regions are of high-frequent subsided areas around the world...