Loading...
Search for: clock-and-data-recoveries
0.009 seconds

    Clock and Data Recovery Circuit For High Speed Serial Communication

    , M.Sc. Thesis Sharif University of Technology Mousavi, Hassan (Author) ; Hajsadeghi, Khosroo (Supervisor)
    Abstract
    In this thesis, A novel approach for ¼-rate clock Phase Detector (PD) structure for Phase Locked Loop (PLL)-based Clock and Data Recovery (CDR) is proposed. In this approach, the retimed data is generated within the circuit and no extra circuit is needed. Another advantage of this topology is that the error and reference signals are independent of delay time through gates and no extra replica circuit is needed to compensate the delay. This topology results in a lower power circuit and smaller area for high speed application compared to conventional topologies  

    A 1/4 rate linear phase detector for PLL-based CDR circuits

    , Article ISCAS 2006: 2006 IEEE International Symposium on Circuits and Systems, Kos, 21 May 2006 through 24 May 2006 ; 2006 , Pages 3281-3284 ; 02714310 (ISSN); 0780393902 (ISBN); 9780780393905 (ISBN) Saffari, M ; Atarodi, M ; Tajalli, A ; Sharif University of Technology
    2006
    Abstract
    In this paper, a new 1/4 rate clock linear phase detector (PD) structure for PLL-based clock and data recovery (CDR) circuits will be suggested. The proposed topology offers a more suitable PD for high speed applications compared to the conventional topologies. The effect of duty cycle variation on the operation of CDR has been also studied. Designed in a 0.18μm CMOS technology, the proposed PD consumes 16mA from a 1.8V voltage supply. © 2006 IEEE  

    A multichannel 3.5mW/Gbps/channel gated oscillator based CDR in a 0. 18μm digital CMOS technology

    , Article ESSCIRC 2005: 31st European Solid-State Circuits Conference, Grenoble, 12 September 2005 through 16 September 2005 ; 2005 , Pages 193-196 ; 0780392051 (ISBN); 9780780392052 (ISBN) Tajalli, A ; Muller, P ; Atarodi, M ; Leblebici, Y ; Sharif University of Technology
    2005
    Abstract
    This article presents a very low-power clock and data recovery (CDR) circuit with 8 parallel channels achieving an aggregate data rate of 20 Gbps. A structural top-down design methodology has been applied to minimize the power dissipation while satisfying the required specifications for short-haul receivers. Implemented in a 0.18μm digital CMOS technology, total power dissipation is 70.2mW or 3.51mW/Gbps/Ch and each channel occupies 0.045 μm2 silicon area. © 2005 IEEE  

    A low-power, multichannel gated oscillator-based CDR for short-haul applications

    , Article 2005 International Symposium on Low Power Electronics and Design, San Diego, CA, 8 August 2005 through 10 August 2005 ; 2005 , Pages 107-110 ; 15334678 (ISSN) Tajalli, A ; Muller, P ; Atarodi, M ; Leblebici, Y ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2005
    Abstract
    A gated current-controlled oscillator (GCCO) based topology is used to implement a low-power multi-channel clock and data recovery (CDR) system in a 0.18um digital CMOS technology. A systematic approach is presented to design a reliable and low-power system based on the required specifications. Behavioral simulations are also used to estimate the achievable bit error rate (BER), jitter tolerance (JTOL), and frequency offset tolerance (FTOL) of the proposed CDR. Using a single 1.8V supply voltage, the proposed 20Gbps 8-channel CDR consumes only 70.2mW or 3.51mW/Channel/Gbps while occupies 0.045mm2 silicon area. Copyright 2005 ACM  

    A power-efficient clock and data recovery circuit in 0.18 μm CMOS technology for multi-channel short-haul optical data communication

    , Article IEEE Journal of Solid-State Circuits ; Volume 42, Issue 10 , 2007 , Pages 2235-2244 ; 00189200 (ISSN) Tajalli, A ; Muller, P ; Leblebici, Y ; Sharif University of Technology
    2007
    Abstract
    This paper studies the specifications of gated-oscillator-based clock and data recovery circuits (GO CDRs) designed for short haul optical data communication systems. Jitter tolerance (JTOL) and frequency tolerance (FTOL) are analyzed and modeled as two main design parameters for the proposed topology to explore the main tradeoffs in design of low-power GO CDRs. Based on this approach, a top-down design methodology is presented to implement a low-power CDR unit while the JTOL and FTOL requirements of the system are simultaneously satisfied. Using standard digital 0.18 μm CMOS technology, an 8-channel CDR system has been realized consuming 4.2 mW/Gb/s/channel and occupying a silicon area of... 

    Low power Clock and Data Recovery Circuits in 20Gb/s Range in CMOS Technology

    , M.Sc. Thesis Sharif University of Technology Parkalian, Nina (Author) ; Hajsadeghi, Khosrow (Supervisor)
    Abstract
    Growing demand for increased data transmission in communication systems and the internet, has intensified the need to increase the bandwidth of high speed transceivers. One of the main elements in high speed receivers is the clock and data recovery circuit which guarantees the transfer of data with high reliability. In this thesis, the design of a clock and data recovery circuit for high frequency applications is considered. The aim of this project is the design of a circuit with low power and low jitter for high-speed input data. A new four stage LC ring oscillator is designed that works at the quarter rate of the input. A new idea for the design of the binary phase detectors has also been... 

    Design of Clock and Data Recovery Circuits Inmulti Gb/s Range in CMOS Technology

    , M.Sc. Thesis Sharif University of Technology Jafarbeiki, Sara (Author) ; HajSadeghi, Khosrow (Supervisor)
    Abstract
    Some applications need fast locking clock and data recovery circuits for example the circuits that operate in burst mode must lock to the data packets which are transmitting from different transmitters very quickly and in just a few bit times. In such applications open-loop clock and data recovery circuits are used because lock time in closed-loop clock and data recovery circuits is usually much longer.
    In this thesis a new open loop clock and data recovery circuit based on injection locking method has been proposed. This circuit can be used in applications such as passive optical networks that need fast locking. In this architecture a super harmonic injection-locked frequency divider... 

    Clock and Data Recovery based on Phase Shifting and Accordion Oscillator

    , M.Sc. Thesis Sharif University of Technology Fatemi Mofrad, Ali (Author) ; Fotowat Ahmady, Ali (Supervisor) ; Akbar, Fatemeh (Supervisor)
    Abstract
    The continuous growth of network traffic and people's demand for higher data rates, have driven wireline communication systems towards higher data rates. In these systems, the power consumption of these transmitters and receivers is a crucial and influential factor. This paper presents two different solutions to reduce the power consumption and area of these systems. In the first solution, a low-power phase shifter with variable phase and amplitude control is introduced. The changes in these parameters are mutually orthogonal, ensuring that a change in one characteristic does not affect the others. This phase shifter can be used to generate clock pulses with different phases in wireline... 

    Low-power analogue phase interpolator based clock and data recovery with high-frequency tolerance

    , Article IET Circuits, Devices and Systems ; Volume 2, Issue 5 , 2008 , Pages 409-421 ; 1751858X (ISSN) Sakian, P ; Saffari, M ; Atarodi, M ; Tajalli, A ; Sharif University of Technology
    2008
    Abstract
    A low-power delay-locked loop (DLL)-based clock and data recovery (CDR) circuit with a high-frequency tolerance is presented. The design of DLL clock generator is based on an analytical approach to satisfy the jitter requirements of the system. Meanwhile, a novel analogue phase interpolator (PI) has been employed for fine delay adjustment of the recovered clock. Using a charge-pump-based PI, it is possible to simplify the control circuit considerably and hence reduce the system power consumption. To improve the frequency-tracking ability of the system, a frequency control loop is also added to the proposed CDR system. Designed in conventional 0.18 μm CMOS technology and operating in 10 Gbps... 

    A low power, eight-phase LC-ring oscillator for clock and data recovery application

    , Article 2012 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits, INMMIC 2012 ; 2012 ; 9781467329491 (ISBN) Parkalian, N ; Hajsadeghi, K ; Sharif University of Technology
    2012
    Abstract
    A four stage LC-ring oscillator is presented. Eight different phases are generated in which there in 45 degrees phase difference between consecutive outputs and direction of phases is defined. Nmos capacitors in parallel with constant capacitors are used for coupling between stages. The control voltage is applied to Pmos varactors to adjust the oscillation frequency. The advantages of this structure are the rather small inductors size, low power consumption, and tuning curve linearity. The proposed structure is simulated in 0.18um CMOS technology. Power consumption for each stage is 4.8mW from a 1.8B supply. The proposed VCO has a phase noise of -121dBc/Hz at 1MHz offset from the center...