Loading...
Search for: co-delivery
0.004 seconds

    Magnetic carbon–based nanocomposite decorated with palladium complex for co-delivery of DOX/pCRISPR

    , Article Journal of Drug Delivery Science and Technology ; Volume 78 , 2022 ; 17732247 (ISSN) Bagherzadeh, M ; Safarkhani, M ; Daneshgar, H ; Radmanesh, F ; Taghavimandi, F ; Ghadiri, A. M ; Kiani, M ; Fatahi, Y ; Safari Alighiarloo, N ; Ahmadi, S ; Rabiee, N ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    Hybrid inorganic/organic compounds opened up the window of opportunities to a wide variety of fields. The carbon-based nanocomposite (Fe3O4/MWCNT-COOH/Extract/PdL@DOX/p-CRISPR/Extract) have been prepared using tangerine and egg white extract as a second layer of nanocomposites. Then, doxorubicin (DOX) and PdC16H10N4O3 (PdL) were added to the mixture. Based on the previous studies, L (carboxamide-based ligand) has a potent desire for connecting and then blocking the HER-2, and σ2 (tumor's overexpressed receptors) and PdL could enhance the sustainability of the DOX by hydrogen bonding and π-π interaction. The effect of biotin on site-specific delivery has been investigated by utilizing two... 

    PH-Responsive chitosan-adorned niosome nanocarriers for co-delivery of drugs for breast cancer therapy

    , Article ACS Applied Nano Materials ; Volume 5, Issue 7 , 2022 , Pages 8811-8825 ; 25740970 (ISSN) Karimifard, S ; Rezaei, N ; Jamshidifar, E ; Moradi Falah Langeroodi, S ; Abdihaji, M ; Mansouri, A ; Hosseini, M ; Ahmadkhani, N ; Rahmati, Z ; Heydari, M ; Vosough, M ; Akbarzadeh, I ; Mostafavi, E ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Breast cancer incidence has increased in recent decades. In the present study, an optimum formulation of chitosan (CS)-adorned niosome-based nanocarriers for co-delivery of doxorubicin (DOX) and vincristine (VIN) was developed for the treatment of breast cancer to reduce drug doses and overcome multidrug resistance. The three-level Box-Behnken method was utilized to optimize the particles in terms of size, polydispersity index (PDI), entrapment efficacy (EE (%)), and percent of drug release (%). The release rate of two drugs from CS-adorned nanoparticles (DOX+VIN/Nio/CS) in acidic and physiological pH is less than uncoated niosome (DOX+VIN/Nio). In addition, acidic pH increases the release... 

    Evaluation of anti-cancer and anti-metastatic effects of folate-PEGylated niosomes for co-delivery of letrozole and ascorbic acid on breast cancer cells

    , Article Molecular Systems Design and Engineering ; Volume 7, Issue 9 , 2022 , Pages 1102-1118 ; 20589689 (ISSN) Bourbour, M ; Khayam, N ; Noorbazargan, H ; Tavakkoli Yaraki, M ; Asghari Lalami, Z ; Akbarzadeh, I ; Eshrati Yeganeh, F ; Dolatabadi, A ; Mirzaei Rad, F ; Tan, Y. N ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Fighting with cancer requires the delivery of different therapeutics to the target cancerous cells by taking advantage of the synergistic effects of complementary medicine. Herein, we present a folate-PEGylated niosome as an efficient nanocarrier for targeted co-delivery of hydrophobic letrozole (L) and hydrophilic ascorbic acid (A) to breast cancer cells. The formulation of the niosomal nanocarrier was optimized by varying the ratio of cholesterol and surfactants to maximize the drug loading and minimize the size of nanocarriers. The optimum drug carriers were further functionalized with folate-PEG molecules to enhance the efficiency of drug delivery to the breast cancer cells and prevent... 

    Graphene oxide functionalized with oxygen-rich polymers as a pH-sensitive carrier for co-delivery of hydrophobic and hydrophilic drugs

    , Article Journal of Drug Delivery Science and Technology ; Volume 56 , 2020 Pourjavadi, A ; Asgari, S ; Hosseini, S. H ; Sharif University of Technology
    Editions de Sante  2020
    Abstract
    In this work, a novel carrier based-on modified graphene oxide was designed for co-delivery of hydrophobic and hydrophilic anticancer drugs (curcumin (Cur) and doxorubicin (DOX) as the model of drugs). The hydroxyl groups at the edges of graphene oxide (GO) sheets were used as the initiation sites for growing poly(epichlorohydrin) (PCH) chains. Then, hyperbranched polyglycerol (HPG) was grafted on the hydroxyl end groups of PCH (PCH-g-HPG). Pendant chlorines in the main chain of GO-PCH-g-HPG were replaced with hydrazine. The modification of GO sheets with oxygen-rich polymers increased water solubility of graphene oxide. Doxorubicin was loaded onto the nanocarrier by covalent bonding with... 

    Natural polymers decorated mof-mxene nanocarriers for co-delivery of doxorubicin/pCRISPR

    , Article ACS Applied Bio Materials ; Volume 4, Issue 6 , 2021 , Pages 5106-5121 ; 25766422 (ISSN) Rabiee, N ; Bagherzadeh, M ; Jouyandeh, M ; Zarrintaj, P ; Saeb, M. R ; Mozafari, M ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    A one-pot and facile method with assistance of high gravity was applied for the synthesis of inorganic two-dimensional MOF-5 embedded MXene nanostructures. The innovative inorganic MXene/MOF-5 nanostructure was applied in co-delivery of drug and gene, and to increase its bioavailability and interaction with the pCRISPR, the nanomaterial was coated with alginate and chitosan. The polymer-coated nanosystems were fully characterized, and the sustained DOX delivery and comprehensive cytotoxicity studies were conducted on the HEK-293, PC12, HepG2, and HeLa cell lines, demonstrating acceptable and excellent cell viability at both very low (0.1 μg.mL-1) and high (10 μg·mL-1) concentrations. The...