Loading...
Search for: coarse-grain-models
0.01 seconds
Total 31 records

    Coarse-graining models for molecular dynamics simulations of FCC metals

    , Article Journal of Theoretical and Applied Mechanics (Poland) ; Volume 56, Issue 3 , 2018 , Pages 601-614 ; 14292955 (ISSN) Delafrouz, P ; Nejat Pishkenari, H ; Sharif University of Technology
    Polish Society of Theoretical and Allied Mechanics  2018
    Abstract
    In this paper, four coarse-graining (CG) models are proposed to accelerate molecular dynamics simulations of FCC metals. To this aim, at first, a proper map between beads of the CG models and atoms of the all-atom (AA) system is assigned, afterwards mass of the beads and the parameters of the CG models are determined in a manner that the CG models and the original all-atom model have the same physical properties. To evaluate and compare precision of these four CG models, different static and dynamic simulations are conducted. The results show that these CG models are at least 4 times faster than the AA model, while their errors are less than 1 percent. © 2018 Polish Society of Theoretical... 

    A Coarse -Grained Model for Molecular Dynamics Simulation of Crystalline Nano- Structures

    , M.Sc. Thesis Sharif University of Technology Ahmadzadeh, Baharan (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen ($item.subfieldsMap.e)
    Abstract
    In this work, we investigate the application of coarse graining (CG) methods to molecular dynamics (MD) simulations. These methods provide access to length and time scales previously inaccessible to traditional materials, simulation techniques. However, care must be taken when applying any coarse graining strategy to ensure that we preserve the material properties of the system we are interested in. The most prominent of these techniques is the so called multi scale coarse graining (MS-CG) method. In this study we will focus on the modeling of crystalline Nano structures using coarse graining as one of the approaches in multi scale analysis the force matching method is mainly followed to... 

    Definition of the persistence length in the coarse-grained models of DNA elasticity

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 86, Issue 5 , November , 2012 ; 15393755 (ISSN) Fathizadeh, A ; Eslami Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    2012
    Abstract
    By considering the detailed structure of DNA in the base pair level, two possible definitions of the persistence length are compared. One definition is related to the orientation of the terminal base pairs, and the other is based on the vectors which connect two adjacent base pairs at each end of the molecule. It is shown that although these definitions approach each other for long DNA molecules, they are dramatically different on short length scales. We show analytically that the difference mostly comes from the shear flexibility of the molecule and can be used to measure the shear modulus of DNA  

    Analytical first derivatives of the RE-squared interaction potential

    , Article Journal of Computational Physics ; Volume 219, Issue 2 , 2006 , Pages 770-779 ; 00219991 (ISSN) Babadi, M ; Ejtehadi, M. R ; Everaers, R ; Sharif University of Technology
    Academic Press Inc  2006
    Abstract
    We derive exact expressions for the forces and torques between biaxial molecules interacting via the RE-squared potential, a recent variant of the Gay-Berne potential. Moreover, efficient routines have been provided for rigid body MD simulations, resulting in 1.6 times speedup compared to the two-point finite difference approach. It has also been shown that the time cost of a MD simulation will be almost equal to a similar MC simulation, making use of the provided routines. © 2006 Elsevier Inc. All rights reserved  

    Coarse-grained interaction potentials for anisotropic molecules

    , Article Journal of Chemical Physics ; Volume 124, Issue 17 , 2006 ; 00219606 (ISSN) Babadi, M ; Everaers, R ; Ejtehadi, M. R ; Sharif University of Technology
    2006
    Abstract
    We have proposed an efficient parametrization method for a recent variant of the Gay Berne potential for dissimilar and biaxial particles [Phys. Rev. E 67, 041710 (2003)] and demonstrated it for a set of small organic molecules. Compared with the previously proposed coarse-grained models, the new potential exhibits a superior performance in close contact and large distant interactions. The repercussions of thermal vibrations and elasticity have been studied through a statistical method. The study justifies that the potential of mean force is representable with the same functional form, extending the application of this coarse-grained description to a broader range of molecules. Moreover, the... 

    Cooperation within von Willebrand factors enhances adsorption mechanism

    , Article Journal of the Royal Society Interface ; Volume 12, Issue 109 , 2015 ; 17425689 (ISSN) Heidari, M ; Mehrbod, M ; Ejtehadi, M. R ; Mofrad, M. R ; Sharif University of Technology
    Royal Society of London  2015
    Abstract
    von Willebrand factor (VWF) is a naturally collapsed protein that participates in primary haemostasis and coagulation events. The clotting process is triggered by the adsorption and conformational changes of the plasma VWFs localized to the collagen fibres found near the site of injury. We develop coarse-grained models to simulate the adsorption dynamics of VWF flowing near the adhesive collagen fibres at different shear rates and investigate the effect of factors such as interaction and cooperativity of VWFs on the success of adsorption events. The adsorption probability of a flowing VWF confined to the receptor field is enhanced when it encounters an adhered VWF in proximity to the... 

    Structure of DNA Confined in Nano-Environment

    , M.Sc. Thesis Sharif University of Technology Khatami, Maryam (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    Ejtehadi, M. R. (Mohammad Reza)All cells store their hereditary information in the same linear chemical code, DNA molecule. These information organize all activities of the cell. Therefore, studying various properties of DNA is a big step toward understanding life. Physicists are interested in elastic properties of DNA molecule. DNA is somehow a chain of successive atoms that have been arranged in a helical ladder shape. DNA is a stiff polymer so one has to use a large amount of energy to bend it. Interestingly, in most of the natural cases, DNA is highly packed into spaces that are much smaller that its total length. Cell’s nucleus and viral capsids are some examples. Virus maybe the... 

    Multi-Scale Simulation of the Viscoelastic Behavior of the Cell Membrane

    , M.Sc. Thesis Sharif University of Technology Ali Khourshaei Shargh (Author) ; NaghdAbadi, Reza (Supervisor) ; Sohrabpour, Saeed (Co-Advisor)
    Abstract
    Due to the limitations on experiments in the field of cell mechanics, computational modeling of biological cells have attracted attention within two recent decades. In general, some models have been developed in two different scales, known as microstructure and continuum, both of which have their own pros and cons. Nevertheless, viscoelastic behavior of cell membrane has attracted less attention of scientists up to now. Therefore, multi-scale simulation of the viscoelastic behavior of the cell membrane has been chosen as the main goal of this thesis. Toward this goal, at first the energy of the simulation box, consisting of 128 Dipalmitoylphosphatidylcholine and 3655 water molecules, was... 

    Developing a Model for Simulation of Dynamic Behavior of Nano-beams

    , M.Sc. Thesis Sharif University of Technology Delafrouz, Pourya (Author) ; Nejat, Hossein (Supervisor)
    Abstract
    The utility of nano-beams in MEMs and NEMs has progressed a lot in recent years. Such systems have found wide spread use in sensors and actuators due to small size, low weight, high accuracy and low energy consumption. By a decrease in size of nano-beams, surface effect increases which makes the classical theories unable to modeling such beams. Therefore new models are required for evaluating the dynamic behavior of nano-beams. In this thesis we have attempted to develop a suitable Coarse-Grain model for analysis of such beams. At first a suitable Coarse-Grain mapping with determined Sutton-Chen potential parameters is introduced for FCC metals. In the next step, EAM is considered as... 

    Coarse-Grain Multi-Scale Modeling for Numerical Simulation of Plastic Behavior in Nano-Scale Material

    , M.Sc. Thesis Sharif University of Technology Bahrololoumi Tabatabaei, Amir (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In this paper, a multiscale coarse graining method is developed on the basis of the force matching theorem in order to model the nonlinear behavior of crystalline material. In this framework, two scales are involved, i.e. the nano- and meso-scales. In each of scales, molecular dynamic simulations are employed with this difference that the fine scale is modeled via embedded atom method many body potential and at the coarse scale the simulation is based on pairwise potential. In addition, the linkage between fine and coarse scales is achieved by data transfer between two scales; in a way that required information for coarse grain analyses, i.e. inter-particle potential and coarse scale initial... 

    Comparing EC and GO Model in Protein Folding Simulation

    , M.Sc. Thesis Sharif University of Technology Mohseni Kabir, Arman (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    Proteins are one of the most important bio-molecules. they play an important role in every aspect of living organisms. The information for synthesizing these important molecules is coded in the DNA of that organism. After the coded data is read and transcribed by some other bio-molecules that are proteins themselves, the protein is made and starts it's biological function in different organs. For this reason, investigating properties of proteins helps us to better understand how life works. Understanding the dynamics of proteins, which are some polymers with special energy landscape properties, has attracted the attention of physicists in the 20th century. Proteins are chains of amino... 

    ”A Study on the Process of Passive Uptake of Nanoparticles by Coarse-Grained MD Simulation”

    , M.Sc. Thesis Sharif University of Technology Shirzad, Hoda (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    The aim of this thesis is to investigate the passive wrapping of nanoparticles by a lipid membrane in the uptake process using molecular dynamics computer simulations. The simulations are carried out by the Virtual Cell Model (VCM) software package, a computational framework that creates a large scale coarse-grained multi-component cell model developed by Prof Mohammad Reza Ejtehadi’s Soft Matter Group at Sharif University of Technology. VCM can model the dynamics of different parts of the cell and investigate their mechanical properties.A chapter of this thesis contributes to further development of the membrane model used in the VCM to simulate nanoparticles interactions with a membrane.... 

    Elasticity of DNA Molecule The Role of Anisotropy, Asymmetry and Nonlocal Interactions

    , Ph.D. Dissertation Sharif University of Technology Eslami Mosallam, Behrouz (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    The DNA Molecule carries genetic information in almost all living organisms. The information coded on DNA is an instruction which organizes and conducts all living activities of the living organism. The role of DNA in biological processes is so fundamental that life, as we know, is not possible without DNA. Therefore, studying the biological properties of DNA is crucial for understanding the nature of life. In biological conditions, DNA molecule can be found in highly packed configurations. Since the DNA is a rather stiff molecule, the formation of these configurations cost a considerable amount of energy. The elasticity of DNA plays an important role here. The important question is: how... 

    All-Atom Molecular Dynamics Simulation of DNA in Nanoscale

    , M.Sc. Thesis Sharif University of Technology Rezaei, Meisam (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    Molecule of DNA is one of the most important biomolecule in cell which contains genetic information to supply the required proteins for body. Evidence shows prefered binding sequence for proteins exist to interact with proteins which this preference is determined not only by specefic chemical interactions between DNA and protein, but also specific suitable geometrical arrangements of DNA have important role to inding DNA oligomer and protein, such as winding DNA around histon to creating nucleosome is related to curvature and deformability of DNA. Thus knowing elastic behaviour and properties of DNA helps us to approach the answer of such questions. Despite the recent dvancement in labratory... 

    Nanocar swarm movement on graphene surfaces

    , Article Physical Chemistry Chemical Physics ; Volume 24, Issue 45 , 2022 , Pages 27759-27771 ; 14639076 (ISSN) Vaezi, M ; Nejat Pishkenari, H ; Ejtehadi, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Investigation of nanomachine swarm motion is useful in the design of molecular transportation systems as well as in understanding the assembly process on the surface. Here, we evaluate the motion of the clusters of nanocars on graphene surfaces, using molecular dynamics (MD) simulations. The mechanism of motion of single nanocars is evaluated by considering the rotation of the wheels, direction of the nanocars’ speed and comparing the characteristics of the surface motion of nanocars and similar absorbed molecules. The mentioned analyses reveal that, in the thermally activated surface motion of the nanocars, sliding movements are the dominant mode of motion. A coarse grained (CG) model is... 

    A Temperature-Dependent Coarse-Graining Method for Nano Crystalline Materials

    , M.Sc. Thesis Sharif University of Technology Vahed Mohammad Ghasemloo, Zahra (Author) ; Khoie, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Co-Advisor)
    Abstract
    The molecular dynamic (MD) method was first reported by Alder and Wainwright in the late 1950s to study the interaction of hard spheres. Molecular dynamic (MD) simulation is a technique for computing equilibrium and forwarding properties for classical many-body systems. This is a reasonable and often excellent approximation for a wide range of systems and properties. Although molecular dynamics method provide the kind of detail necessary to resolve molecular structure and localized interaction, this fidelity comes with a price. Namely, both the size and time scales of the model are limited by numerical and computational boundaries.The multi scale approach taken by the computational materials... 

    Coarse Grained Molecular Dynamics Simulation of DNA Nanomechanics

    , Ph.D. Dissertation Sharif University of Technology Fathizadeh, Arman (Author) ; Ejtehadi, Mohammad Reza (Supervisor) ; Khoei, Amir Reza (Co-Advisor)
    Abstract
    DNA is the most important biological molecule which contains all the genetic information of living organisms. The mechanical behavior of this molecule has a significant role on its functions. In this study, we introduce a model to for DNA nanomechanics. This model is called rigid base-pair chain in which every base pair is considered as a rigid object. The base-pairs only interact with their nearest neighbors via a harmonic potential. We have used this model to study the nanomechanical behavior of the DNA such as its bending, twisting, and stretching elasticity. Also the model was successful to predict the structure of DNA minicircles with extra amount of twist. After that we used the model... 

    Modeling of Force Interactions between Tip of Atomic Force Microscopy in Trolling Mode and Environment

    , M.Sc. Thesis Sharif University of Technology Falsafi, Ali (Author) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    Submerging of the Micro-beam of the AFM is indispensible in case of imaging bio-samples. (Bio-samples are unstable in non-aquos environment.), so hydrodynamical interaction of liquid and beam (viscous and meniscus forces) will result into quality factor decrease. This will cause image resolution decrement as well as damage to the sample because of large tip-sample forces during imaging of the bio-samples. The proposed method “Trolling mode AFM” keeps the micro-beam of the AFM out of the liquid, by adding a nano-needle to the end of the AFM tip. This would lead to resolve the aforementioned problems. Modeling of a part of the operation of this mechanism was done in this thesis, in order to... 

    Study and Simulation of Nanoparticles Translocation through Cell Membrane

    , M.Sc. Thesis Sharif University of Technology Barzegar, Mohammad Reza (Author) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    In this research, we aim to study and simulate how nanoparticels translocate through cell membrane. For this purpose, at first a gold nanoparticle is selected as the drug carrier. The partial charges of the ligands are calculated using quantum mechanics based on HF technique with 6-31Gd basis set. To have a realistic shape for nano drug, number and arrangement of ligands are determined based on optimization. After all atom simulations and comparison of results such as diffusion coefficient with experiments, a coarse-grained model of these drugs is created and put inside solvent beside a membrane. The cytoplasmic membrane includes more than 60 types of phospholipids like animal membranes.... 

    Accelerating Perfect and Imperfect Loops Using Reconfigurable Architectures

    , M.Sc. Thesis Sharif University of Technology Tanhaee, Effat (Author) ; Hesabi, Shahin (Supervisor)
    Abstract
    With the widespread use of mobile applications, multimedia and telecommunications, speed of execution has become important. The computation-intensive portions of applications, i.e., loops, devote a significant percentage of their implementation time. Thus, in this thesis, a new method is introduced which greatly increases the execution speed of the loops. Loops are often implemented on coarse-grained reconfiguration architecture (CGRAs) for acceleration, which is a promising architecture with high performance and high power efficiency in comparison to FPGA. In this regard, to reduce the execution time of two-level nested loops, if there are several innermost loops, first, we fuse them, then...