Loading...
Search for: coating--procedure
0.004 seconds

    Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles

    , Article International Journal of Environmental Science and Technology ; Volume 6, Issue 1 , 2009 , Pages 105-112 ; 17351472 (ISSN) Khanfekr, A ; Arzani, K ; Nemati, A ; Hosseini, M ; Sharif University of Technology
    CEERS  2009
    Abstract
    (Lanthanum, Cerium)(Iron, Manganese, Cobalt, Palladium)(Oxygen)3- Perovskite catalyst was prepared by the citrate route and deposited on ceramic monoliths via dip coating procedure. The catalyst was applied on a car with XU7 motors and the amount of emission was monitored with vehicle emission test systems in Sapco company. The results were compared with the imported catalyst with noble metals such as palladium, platinum and rhodium by Iran Khodro company based on the Euro III standards. The catalysts were characterized by specific surface area measurements, scanning electron microscopy, X-ray diffraction, line scan and map. In the results, obtained in the home made sample, the amount of... 

    Amine/phenyl gradient derived base layer as a comprehensive extractive phase for headspace cooled in–tube microextraction of volatile organic compounds in saliva

    , Article Journal of Pharmaceutical and Biomedical Analysis ; Volume 191 , 2020 Enteshari Najafabadi, M ; Bagheri, H ; Rostami, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A gradient derived base layer extractive phase was synthesized and applied for the determination of volatile organic compounds (VOCs) in saliva samples using the headspace cooled in–tube microextraction (HS–CITME) method. The base layers from three different sols of phenyltriethoxysilane (PTES), octyltrimethoxysilane (OTMS) and methyltrimethoxysilane (MTMS) as nonpolar precursors were individually dip coated on the stainless steel wires (SSW). Then, the hydrolyzed polar precursor aminopropyltriethoxysilane (APTES) reacted with the silanol groups already formed on the surface of SSWs via controlled rate infusion (CRI) method. The presence of polar and non–polar functional groups on the... 

    Reduced polydopamine coated graphene for delivery of Hset1 antisense as A photothermal and gene therapy of breast cancer

    , Article Journal of Drug Delivery Science and Technology ; Volume 73 , 2022 ; 17732247 (ISSN) Babavalian, A ; Tekie, F. S. M ; Ayazi, H ; Ranjbar, S ; Varshochian, R ; Rad-Malelkshahi, M ; Akhavan, O ; Dinarvand, R ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    Breast cancer is the most prevalent type of cancer in women; hence, many researches have been focused on developing effective treatment protocols. In this study, a novel nanocarrier was fabricated for gene and photothermal combination cancer therapy by conjugating histone methyltransferase complex subunit SET1 (hSET1) on reduced polydopamine coated graphene oxide nanosheets (rGO-PDA). The rGO-PDA nanocarriers provide higher near-infrared absorption and further integrating with hSET1 antisense as an anticancer gene that down-regulates the amount of hSET1 overexpressed and suppresses the proliferation of cancer cells. The nanoplatform was prepared by polymerizing of dopamine, a mussel adhesive... 

    Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19

    , Article Journal of Medical Engineering and Technology ; Volume 45, Issue 6 , 2021 , Pages 423-433 ; 03091902 (ISSN) Kabir, H ; Merati, M ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19, is one of the most contagious viruses resulting in a progressive pandemic. Since specific antiviral treatments have not been developed yet and its fatal rate is almost high, early and fast detection is critical for controlling the outbreak. In this study, a piezoelectric microcantilever biosensor has been designed for detecting COVID-19 samples directly without requiring preparation steps. The biosensor acts as a transducer and is coated with the related antibody. When the SARS-CoV-2 antigens adsorbed on the microcantilever top surface through their spike proteins, a surface stress due to the mass change would be... 

    Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications

    , Article Science of the Total Environment ; Volume 836 , 2022 ; 00489697 (ISSN) Nadeem, H ; Athar, M ; Dehghani, M ; Garnier, G ; Batchelor, W ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Plastic packaging is causing a serious environmental concern owing to its difficulty in degrading and micro-particulates' emissions. Developing biodegradable films has gained research attention to overcome ecological and health issues associated with plastic based packaging. One alternative substitute for petroleum-based plastic is nanocellulose based films, having distinguishing characteristics such as biodegradability, renewability, and non-toxicity. Nanocellulose is classified into three major types, i.e., cellulose nanofibril, cellulose nanocrystals, and bacterial nanocellulose. However, the scope of this review is limited to cellulose nanofibril (CNF) because this is the only one of... 

    Bioinspired TiO2/chitosan/HA coatings on Ti surfaces: Biomedical improvement by intermediate hierarchical films

    , Article Biomedical Materials (Bristol) ; Volume 17, Issue 3 , 2022 ; 17486041 (ISSN) Rahnamaee, S. Y ; Ahmadi Seyedkhani, S ; Eslami Saed, A ; Sadrnezhaad, S. K ; Seza, A ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    The most common reasons for hard-tissue implant failure are structural loosening and prosthetic infections. Hence, in this study, to overcome the first problem, different bioinspired coatings, including dual acid-etched, anodic TiO2 nanotubes array, anodic hierarchical titanium oxide (HO), micro- and nanostructured hydroxyapatite (HA) layers, and HA/chitosan (HA/CS) nanocomposite, were applied to the titanium alloy surfaces. X-ray diffraction and FTIR analysis demonstrated that the in situ HA/CS nanocomposite formed successfully. The MTT assay showed that all samples had excellent cell viability, with cell proliferation rates ranging from 120% to 150% after 10 days. The HO coating... 

    Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline

    , Article Journal of Materials Science: Materials in Medicine ; Volume 33, Issue 6 , 2022 ; 09574530 (ISSN) Zarghami, V ; Ghorbani, M ; Pooshang Bagheri, K ; Shokrgozar, M. A ; Sharif University of Technology
    Springer  2022
    Abstract
    Methicillin resistance Staphylococcus aureus bacteria (MRSA) are serious hazards of bone implants. The present study was aimed to use the potential synergistic effects of Melittin and tetracycline to prevent MRSA associated bone implant infection. Chitosan/bioactive glass nanoparticles/tetracycline composite coatings were deposited on hydrothermally etched titanium substrate. Melittin was then coated on composite coatings by drop casting method. The surfaces were analyzed by FTIR, XRD, and SEM instruments. Tetracycline in coatings revealed multifunctional behaviors include bone regeneration and antibacterial activity. Releasing ALP enzyme from MC3T3 cells increased by tetracycline, so it is... 

    Niosomal formulation for antibacterial applications

    , Article Journal of Drug Targeting ; Volume 30, Issue 5 , 2022 , Pages 476-493 ; 1061186X (ISSN) Mehrarya, M ; Gharehchelou, B ; Haghighi Poodeh, S ; Jamshidifar, E ; Karimifard, S ; Farasati Far, B ; Akbarzadeh, I ; Seifalian, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Infection is a disease that is mainly caused by different Gram-negative and Gram-positive bacteria. Treatment of infections requires a considerable amount of antibiotics, which can cause serious damage to the patient's body. Delivering the antibiotic only to the site of infection can prevent these destructive effects, such as the destruction of the normal intestinal flora. The drug delivery system through carriers will take antibiotics into a part of the body involved in the disease. Niosome nanoparticles, which have been made from non-ionic surfactants, have been emerging as ideal drug/antibiotics delivery vehicles. Recently, niosome formulations have been targeted to reduce toxicity and... 

    Magnetic, thermally stable, and superhydrophobic polyurethane sponge: A high efficient adsorbent for separation of the marine oil spill pollution

    , Article Chemosphere ; Volume 287 , 2022 ; 00456535 (ISSN) Habibi, N ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, we demonstrated a facile method for the fabrication of magnetic and superhydrophobic polyurethane sponge with water contact angle of 159° as an adsorbent for cleanup the marine oil spill pollution. For this aim, a polyurethane sponge was coated with carbon black (CB), hexagonal boron nitride (h-BN)@Fe3O4, and acrylic resin and then characterized by different techniques. Owing to the chemical and thermal stability of h-BN and CB, the modified sponge was stable under corrosive conditions (pH = 1–14 and salt solutions) and at different temperatures (−12 °C–105 °C). In addition to common oils and organic solvents, we also used the real spilled oils containing monoaromatics and... 

    Development of HAp/GO/Ag coating on 316 LVM implant for medical applications

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 126 , 2022 ; 17516161 (ISSN) Ahmadi, R ; Izanloo, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, antibacterial activity, biocompatibility, and corrosion resistance of 316 LVM implants were improved using the development of HAp/GO/Ag nanocomposite coatings by the dip-coating method. The XRD and FTIR results confirmed the synthesis of HAp/GO/Ag nanocomposites. HAp/Ag nanoparticles (68 nm) bound to epoxy, hydroxyl, and carboxyl functional groups on GO sheets (size of GO sheets varies from 255 to 1480 nm) by electrostatic interaction. FESEM images showed that HAp/GO/Ag coatings had higher density and fewer micro-cracks than pure HAp coatings. In addition, HAp/GO/Ag coatings showed optimized nano-hardness (4.5 GPa) and elasticity modulus (123 GPa). The results of...