Loading...
Search for: cobalt-deposits
0.006 seconds

    3D flower-like nickel cobalt sulfide directly decorated grassy nickel sulfide and encapsulated iron in carbon sphere hosts as hybrid energy storage device

    , Article Applied Surface Science ; Volume 558 , 2021 ; 01694332 (ISSN) Shahi, M ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Developing high-performance supercapacitors is of great significance in the area of renewable energies by virtue of having both high energy and power densities. In this work, an innovative strategy is employed for the fabrication of binder-free binary nickel–cobalt-sulfide (NCS) nanosheets (NSs) directly decorated onto the hydrothermal nickel-sulfide (Ni3S2) nanowires (NWs) as the positive electrodes. The NCS/Ni3S2-nickel foam (NF) positive electrodes rendered superior specific capacity of 499.1 mAh.g−1 at 6 A.g−1. Encapsulated iron into the carbon sphere hosts (Fe-HTCSs) are used as the negative counterparts, exhibiting remarkable specific capacitance of 336.6 F.g−1 (at 0.1 A.g−1). The... 

    An Investigation on the electrochemical behavior of the co/cu multilayer system

    , Article Journal of Nanoscience and Nanotechnology ; Volume 10, Issue 9 , September , 2010 , Pages 5964-5970 ; 15334880 (ISSN) Mahshid, S. S ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    Co/Cu multilayers were deposited in a sulfate solution by controlling the current and potential for the deposition of cobalt and copper layer respectively. The electrochemical behavior of these multilayers was studied by cyclic voltammetry and current transients. In addition, a mathematical analysis was used to characterize the electrodeposition system. Simultaneously, the nucleation and growth mechanisms were monitored by these techniques. In this case, the results clearly showed that electrodeposition of cobalt layers was a kinetically controlled process while the reduction of copper ions was a diffusion-control process. Although nucleation mechanism of the single Co deposit was found as a... 

    How morphological surface parameters are correlated with electrocatalytic performance of cobalt-based nanostructures

    , Article Journal of Industrial and Engineering Chemistry ; Volume 57 , 2018 , Pages 97-103 ; 1226086X (ISSN) Naseri, N ; Talu, S ; Kulesza, S ; Qarechalloo, S ; Achour, A ; Bramowicz, M ; Ghaderi, A ; Solaymani, S ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2018
    Abstract
    To overcome recent energy and environment challenges, developing efficient and low cost photocatalysts are unavoidable. In this context, design of semiconductor nanostructures modified with earth abundant co-catalysts for water splitting reactions requires well engineered and controlled process to optimize surface interface and maximize nanocomposite system efficiency. Here, TiO2 nanotube were synthesized electrochemically and decorated with cobalt based nanostructure co-catalyst for water oxidation reaction using low cost and scalable electro-deposition approach. By changing deposition parameters and complete studying on samples surface morphology and related statistical analysis data,... 

    Hydrogen bubble template fabricated nano-architecture quaternary dendritic sulfide as cathode and electro-etched carbon fiber paper as anode electrode for total novel binder-free asymmetric supercapacitors

    , Article Journal of Alloys and Compounds ; Volume 811 , 2019 ; 09258388 (ISSN) Mohammadi, R ; Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A novel electrode consisting of 3D porous nickel‒cobalt‒copper sulfide dendritic structures is synthesized, in which, for the first time ternary Ni–Co–Cu foam is constructed through hydrogen bubble template and followed by sulfidization via a hydrothermal reaction in thiourea. The 3D, porous Ni–Co–Cu dendritic sulfide electrode exhibits a high specific capacitance of 1203.75 F g−1 (0.963 F cm−2) at current of 1.0 mA and excellent cycling stability, excellent ratability along with high cycle stability. An asymmetric supercapacitor (ASC) using dendritic sulfide structures and reduced electro-etched carbon fiber paper (RECF) as the positive and negative electrodes, respectively is developed.... 

    Direct growth of nickel-cobalt oxide nanosheet arrays on carbon nanotubes integrated with binder-free hydrothermal carbons for fabrication of high performance asymmetric supercapacitors

    , Article Composites Part B: Engineering ; Volume 172 , 2019 , Pages 41-53 ; 13598368 (ISSN) Hekmat, F ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A high performance asymmetric supercapacitor (ASC)has been fabricated by using nickel oxide-cobalt oxide nanosheets (NiO–CoO NSs), which were directly grown on carbon nanotubes (CNTs)and hydrothermal carbon spheres (HTCs)as positive and negative electrodes, respectively. Both electrode materials are binder-free prepared by using a catalytic chemical vapour deposition (CVD)approach followed by a facile hydrothermal method for cathode and a one-step environmental-friendly route called hydrothermal carbonization for anode. Using NiO–CoO NSs@CNTs and HTCs, which were directly grown on Ni foam, not only leads to a very small equivalent series resistance, but also provides an impressive capacitive... 

    3D flower-like binary nickel cobalt oxide decorated coiled carbon nanotubes directly grown on nickel nanocones and binder-free hydrothermal carbons for advanced asymmetric supercapacitors

    , Article Nanoscale ; Volume 11, Issue 6 , 2019 , Pages 2901-2915 ; 20403364 (ISSN) Hekmat, F ; Shahrokhian, S ; Rahimi, S ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    The development of high performance supercapacitors with high energy densities without sacrificing power densities has always been at the leading edge of the emerging field of renewable energy. Herein, the design and fabrication of innovative high performance binder-free electrodes consisting of coiled carbon nanotubes (CNTs) and biomass-derived hydrothermal carbon spheres (HTCSs) as, respectively, positive and negative electrodes is reported. High performance asymmetric supercapacitors (ASCs) were developed using novel 3D core/shell-like binary Ni-Co oxide (NCO) decorated coiled CNTs directly grown on Ni nano-cone arrays (NCAs) and HTCSs directly deposited on NCAs. Novel 3D structures of... 

    A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53(Fe)/CoFe2O4: Facile synthesis and kinetic investigations

    , Article Journal of Molecular Liquids ; Volume 301 , 2020 Bagherzadeh, S. B ; Kazemeini, M ; Mahmoodi, N. M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this research, cobalt ferrite (CoFe2O4) magnetic nanoparticles as well as MIL-53(Fe) structure were synthesized by the hydrothermal and solvothermal methods, respectively. Moreover, magnetic composites of MIL-53(Fe)/CoFe2O4 nanoparticles with different cobalt ferrite loadings (i.e.; 0.05, 0.1 and 0.2 g) were prepared via the solvothermal method. The main novelty of the present research was to synthesize a magnetic composite of MIL-53(Fe)/CoFe2O4 nanoparticles in order to perform rapid photodegradation of Direct Red 23 (DR23) dye under the LED visible light irradiation. Good magnetic properties of the fabricated composite led to easy separation and rapid retrieval of the catalyst from the... 

    Hybrid energy storage device from binder-free zinc-cobalt sulfide decorated biomass-derived carbon microspheres and pyrolyzed polyaniline nanotube-iron oxide

    , Article Energy Storage Materials ; Volume 25 , March , 2020 , Pages 621-635 Hekmat, F ; Hosseini, H ; Shahrokhian, S ; Unalan, H. E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    High-performance supercapacitors that merit superior power and energy densities, as well as long-term cycle durability are always of great significance as a building block of energy storage devices. Herein, an innovative strategy is developed to design hierarchical and unique porous structures of ternary metal sulfide nano-flake decorated porous hydrothermal carbon microspheres. Hierarchical microspheres of ternary zinc-cobalt sulfide nanosheet (NS) decorated biomass derived hydrothermal carbon spheres (HTCSs) are directly employed as the positive supercapacitor electrodes. In addition, composites of pyrolyzed polyaniline nanotubes (PPNTs) and iron oxide, receiving advantages from highly... 

    Copper oxide@cobalt oxide core-shell nanostructure, as an efficient binder-free anode for lithium-ion batteries

    , Article Journal of Physics D: Applied Physics ; Volume 54, Issue 46 , 2021 ; 00223727 (ISSN) Jafaripour, H ; Dehghan, P ; Zare, A. M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Here, cobalt oxide nanostructures synthesized on vertically aligned copper oxide nanowires (NWs) have been investigated as a possible anode material for Lithium-ion batteries (LIBs). Copper oxide NWs were formed by thermal oxidation of electrochemically deposited copper on the stainless steel mesh substrate. The process used allows the formation of highly dense copper oxide NWs with excellent adhesion to the conductive current collector substrate. A simple hydrothermal method was implemented for the deposition of cobalt oxide nanostructures on the copper oxide NWs. The as-prepared binder-free copper oxide@cobalt oxide NWs electrode exhibits a high initial specific capacity of 460 mAh g-1 at... 

    Shape-controlled synthesis of thorn-like 1D phosphorized Co supported by Ni foam electrocatalysts for overall water splitting

    , Article Journal of Materials Science: Materials in Electronics ; Volume 32, Issue 13 , 2021 , Pages 18363-18370 ; 09574522 (ISSN) Nourmohammadi, Khiarak, B ; Asaadi Zahraei, A ; Nazarzadeh, K ; Akbari Hasanjani, H. R ; Mohammadzadeh, H ; Sharif University of Technology
    Springer  2021
    Abstract
    A cost-effective, durable, and easy-to-produce improvement in bifunctional electrocatalysts for water splitting is crucial for future renewable energy systems. In this present study, shape-controlled one-dimensional (1D) phosphorized cobalt (CoP) on 3D porous nickel foam (NiF) was synthesized through successive treatment of commercial NiF with acetone and ethanol, followed by hydrothermal growth of Co and final process of phosphorization by thermochemical reactions. The evaluations of products proved reduced overpotential (270 mV at 10 mA. cm−2 for hydrogen evolution reaction (HER) process and a low overpotential of 320 mV to reach a high current density of 20 mA. cm−2), low Tafel slope... 

    Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions

    , Article Nanoscale ; Volume 13, Issue 41 , 2021 , Pages 17576-17591 ; 20403364 (ISSN) Shamloofard, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Although important advances have been acquired in the field of electrocatalysis, the design and fabrication of highly efficient and stable non-noble earth-abundant metal catalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remain a significant challenge. In this study, we have designed a superior bifunctional catalyst for OER and HER in alkaline media based on the Co-Mo-P/Zn-Co-S multicomponent heterostructure. The as-prepared multicomponent heterostructure was successfully obtained via a simple three-step hydrothermal-sulfidation-electrodeposition process consisting of star-like Co-Zn-S covered with Co-Mo-P. The structure and morphology evaluation of the... 

    Cobalt vanadium chalcogenide microspheres decorated with dendrite-like fiber nanostructures for flexible wire-typed energy conversion and storage microdevices

    , Article Nanoscale ; Volume 14, Issue 25 , 2022 , Pages 9150-9168 ; 20403364 (ISSN) Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    The increasing energy demand for next-generation portable and miniaturized electronics has drawn tremendous attention to develop microscale energy storage and conversion devices with light weight and flexible characteristics. Herein, we report the preparation of flower-like cobalt vanadium selenide/nickel copper selenide (CoVSe/NiCuSe) microspheres with three-dimensional hierarchical structure of micropore growth on copper wire for a flexible fiber microsupercapacitor (microSC) and overall water splitting. The CoV-LDH microspheres are anchored on the dendrite-like NiCu nanostructured Cu wire using a hydrothermal method (CoV-LDH/NiCu@CW). The sulfidation and selenization of CoV-LDH/NiCu was... 

    Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: In vitro cellular study

    , Article Journal of Magnetism and Magnetic Materials ; Volume 462 , 2018 , Pages 185-194 ; 03048853 (ISSN) Hatamie, S ; Parseh, B ; Ahadian, M. M ; Naghdabadi, F ; Saber, R ; Soleimani, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Hyperthermia generally means as increasing the temperature of particular region of body to rise 5 °C above the body's physiological temperature. Here, we investigate the thermal therapy of PEGylated cobalt ferrite nanoparticles prepared by hydrothermal approach on cancerous cell line in the alternative current magnetic field. To characterize of the magnetic nanoparticles (MNPs), scanning electron microscopy, dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, and vibrating sample magnetometer were used. X-ray diffraction analysis confirmed the spinel phase formation of the MNPs. Cytotoxicity of MNPs using MTT assay on L929 cell lines showed the PEGylated... 

    Influence of vanadium, cobalt-codoping on electrochemical performance of titanium dioxide bronze nanobelts used as lithium ion battery anodes

    , Article Journal of Materials Science: Materials in Electronics ; 2018 , Pages 1-9 ; 09574522 (ISSN) Amirsalehi, M ; Askari, M ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    In this work, V, Co-codoped TiO2(B) samples are synthesized through a hydrothermal method, and used as negative electrode materials for lithium ion batteries. The amount of dopants is varied in order to investigate their influence on electrochemical properties. The formation of V, Co-codoped TiO2(B) nanobelts with widths of 20 and 60 nm is demonstrated using X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma–optical emission spectrometry and field-emission scanning electron microscopy analyses. In addition, the electrochemical properties of the samples are tested by cyclic voltammetry, charging/discharging, and cyclic performance techniques. Compared to other... 

    Biomass-derived wearable energy storage systems based on poplar tree-cotton fibers coupled with binary nickel-cobalt nanostructures

    , Article Sustainable Energy and Fuels ; Volume 4, Issue 2 , 2020 , Pages 643-654 Hekmat, F ; Unalan, H. E ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    We hereby demonstrate symmetric and asymmetric supercapacitors (SSCs and ASCs) based on core/shell-like Ni-Co oxide@cotton//Fe2O3-carbon nanotubes@cotton that are capable of storing a remarkable amount of energy, while retaining a high power density and long cycle life. Hierarchical, porous structures of Ni-Co-O nano-rod (NR) decorated Pd-activated cotton fibers (CFs) were fabricated using an eco-benign hydrothermal method and directly used as the cathode of the supercapacitors. Fe2O3-single-wall carbon nanotube (SWCNT) decorated CFs were employed as anodes of the fabricated ASCs. The assembled Ni-Co-O@cotton//Fe2O3-SWCNTs@cotton based ASCs possessed the benefits of a relatively high energy... 

    Beyond hierarchical mixed nickel-cobalt hydroxide and ferric oxide formation onto the green carbons for energy storage applications

    , Article Journal of Colloid and Interface Science ; Volume 593 , 2021 , Pages 182-195 ; 00219797 (ISSN) Abbasi, S ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    To attain superior energy density concurrently with high power density, high-performance supercapacitors have been developed. Herein an innovative strategy has been adopted to fabricate unique binder-free electrodes composed of a unique porous structure of binary metal carbonate hydroxide nanomace-decorated hydrothermal porous carbon spheres (PCSs). Hierarchical nickel-cobalt carbonate hydroxide (NiCOCH) nanomaces, directly grown on PCSs, are used as positive electrodes for supercapacitors fabrication. Furthermore, Fe2O3@PCS composites, having benefits of highly reversible redox reaction in the negative potential window and highly porous structure, are employed as the negative electrode in... 

    Beyond hierarchical mixed nickel-cobalt hydroxide and ferric oxide formation onto the green carbons for energy storage applications

    , Article Journal of Colloid and Interface Science ; Volume 593 , 2021 , Pages 182-195 ; 00219797 (ISSN) Abbasi, S ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    To attain superior energy density concurrently with high power density, high-performance supercapacitors have been developed. Herein an innovative strategy has been adopted to fabricate unique binder-free electrodes composed of a unique porous structure of binary metal carbonate hydroxide nanomace-decorated hydrothermal porous carbon spheres (PCSs). Hierarchical nickel-cobalt carbonate hydroxide (NiCOCH) nanomaces, directly grown on PCSs, are used as positive electrodes for supercapacitors fabrication. Furthermore, Fe2O3@PCS composites, having benefits of highly reversible redox reaction in the negative potential window and highly porous structure, are employed as the negative electrode in... 

    In situ two-step preparation of 3D NiCo-BTC MOFs on a glassy carbon electrode and a graphitic screen printed electrode as nonenzymatic glucose-sensing platforms

    , Article ACS Sustainable Chemistry and Engineering ; Volume 8, Issue 38 , 2020 , Pages 14340-14352 Ezzati, M ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    In the present study, a rational two-step strategy is employed for the green, fast, very simple, and highly controllable synthesis of the bimetallic nickel-cobalt-based metal-organic frameworks (MOFs) on glassy carbon substrates by in situ transformation of nickel-cobalt-layered double hydroxide nanosheet (NiCo-LDHs NSs) intermediates into nickel-cobalt-benzene tricarboxylic acid MOFs (E-NiCo-BTC MOFs). The structural characteristics of the electrode materials in each step were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, elemental mapping, field emission scanning electron microscopy, and transmittance electron microscopy....