Loading...
Search for: coding-mechanism
0.004 seconds

    A reliable and power efficient flow-control method to eliminate crosstalk faults in network-on-chips

    , Article Microprocessors and Microsystems ; Volume 35, Issue 8 , 2011 , Pages 766-778 ; 01419331 (ISSN) Patooghy, A ; Miremadi, S. G ; Tabkhi, H ; Sharif University of Technology
    Abstract
    This paper proposes a power-efficient flow-control method to tackle the problem of crosstalk faults in Network-on-Chips (NoCs). The method, called FRR (Flit Reordering/Rotation), combines three coding mechanisms to entirely eliminate opposite direction transitions (OD transitions) as the source of crosstalk faults in NoC communication channels. The first mechanism, called flit-reordering, reorders flits of every packet to find a flit sequence which produces the lowest number of OD transitions on NoC channels. The second mechanism called flit-rotation, logically rotates the content of every flit of the packet with respect to previously sent flit to achieve even more reduction in the number of... 

    ST-CAC: a low-cost crosstalk avoidance coding mechanism based on three-valued numerical system

    , Article Journal of Supercomputing ; Volume 77, Issue 7 , 2021 , Pages 6692-6713 ; 09208542 (ISSN) Shirmohammadi, Z ; Khorami, A ; Omana, M. E ; Sharif University of Technology
    Springer  2021
    Abstract
    Appearances of specific transition patterns during data transfer in bus lines of modern high-performance computing systems, such as communicating structures of accelerators for deep convolutional neural networks, commercial Network on Chips, and memories, can lead to crosstalk faults. With the shrinkage of technology size, crosstalk faults occurrence boosts and leads to degradation of reliability and performance, as well as the increasing power consumption of lines. One effective way to alleviate crosstalk faults is to avoid the appearance of these specific transition patterns by using numerical-based crosstalk avoidance codes (CACs). However, a serious problem with numerical-based CACs is... 

    S2AP: An efficient numerical-based crosstalk avoidance code for reliable data transfer of NoCs

    , Article 10th International Symposium on Reconfigurable and Communication-centric Systems-on-Chip,, 29 June 2015 through 1 July 2015 ; June , 2015 , Page(s): 1 - 6 ; 9781467379427 (ISBN) Shirmohammadi, Z ; Miremadi, S. G ; Janssen K ; DFG ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Data traversal in Network-on-Chips (NoCs) is threated by crosstalk fault seriously. Crosstalk fault leads to mutual influence between adjacent wires of NoCs and as a result endangers the reliability of data in NoCs. Crosstalk fault is strongly dependent on the transition patterns appearing on the wires of NoCs. Among these transitions, Triplet Opposite Directions (TODs) impose the worse crosstalk effects to the wires of NoCs. This paper proposes an efficient numerical-based coding mechanism called Summation-based-Subtracted-Added-Penultimate (S2AP) which alleviates crosstalk faults. This is done by completely removing TODs which are the main source of crosstalk faults in the channels of...