Loading...
Search for: combustion-kinetics
0.008 seconds

    Comparison and reduction of the chemical kinetic mechanisms proposed for thermal partial oxidation of methane (TPOX) in porous media

    , Article International Journal of Hydrogen Energy ; Volume 46, Issue 37 , 2021 , Pages 19312-19322 ; 03603199 (ISSN) Fotovat, F ; Rahimpour, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The effectiveness and reducibility of the methane combustion kinetic mechanisms were examined for the TPOX process in a porous medium. To this end, TPOX was successfully simulated using ANSYS CHEMKIN-Pro through a reactor network model composed of perfectly stirred and honeycomb-monolith reactors. The efficacy of six chemical kinetic mechanisms was compared for the equivalence ratios (ERs) ranging from 2.4 to 2.6 with a constant thermal load of 1540 kW/m2. This comparison revealed that Konnov was the most successful mechanism in the prediction of the H2 and CO mole fractions. This mechanism along with the GRI-3.0 and USC-Mech 2.0 mechanisms were then reduced by the direct relation graph with... 

    Aerosol modeling of soot nanoparticles in a turbulent diffusion flame using an extended detailed kinetic scheme

    , Article 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 ; 2014 Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this work, a hybrid finite volume element FVE method is extended to simulate the evolution of soot nanoparticles in a turbulent axisymmetric confined diffusion flame. The FVE method can handle irregular-shaped solution domains and maintain the underlying physical conservation principles. To consider the evolutionary process of soot nanoparticles including nucleation, coagulation, surface growth, and oxidation, a two-variable approach is employed. In this approach, the soot mass fraction and soot number density transport equations are solved using an extended detailed chemical kinetics. Considering the phenyl route to describe the nucleation process, soot inception is based on the... 

    Numerical study of pollutant emissions in a Jet stirred reactor under elevated pressure Lean premixed conditions

    , Article Mathematical Problems in Engineering ; Volume 2016 , 2016 ; 1024123X (ISSN) Mazaheri, K ; Shakeri, A ; Sharif University of Technology
    Hindawi Publishing Corporation  2016
    Abstract
    Numerical study of pollutant emissions (NO and CO) in a Jet Stirred Reactor (JSR) combustor for methane oxidation under Elevated Pressure Lean Premixed (EPLP) conditions is presented. A Detailed Flow-field Simplified Chemistry (DFSC) method, a low computational cost method, is employed for predicting NO and CO concentrations. Reynolds Averaged Navier Stokes (RANS) equations with species transport equations are solved. Improved-coefficient five-step global mechanisms derived from a new evolutionary-based approach were taken as combustion kinetics. For modeling turbulent flow field, Reynolds Stress Model (RSM), and for turbulence chemistry interactions, finite rate-Eddy dissipation model are...