Loading...
Search for: combustion-model
0.005 seconds

    Experimental and Numerical Identification of The Rotating-Detonation Phenomenon in an Annular Combustion Chamber

    , M.Sc. Thesis Sharif University of Technology Badrgoltapeh, Mohmmad (Author) ; Farahani, Mohammad (Supervisor) ; Ebrahimi, Abbas (Co-Supervisor) ; Farshchi, Mohammad (Co-Supervisor)
    Abstract
    Rotating detonation engines are capable of reaching a higher efficiency in comparison with ordinary engines, due to utilizing pressure gained combustion wave. In this study, the feasibility of a laboratory sample RDE with an annular geometry of diameter of 76 mm has been studied and then designed and constructed. In this sample, hydrogen and standard air were separately injected into the combustion chamber of detonation. The injection of fuel flow and air flow are axial and radial, respectively. The designed geometry is flexible in terms of changing the injection geometry and detonation channel wide, which provided the possibility of testing for a variety of injection and detonation... 

    Flamelet Modeling in Large-eddy Simulation of Turbulent Premixed
    Flames

    , M.Sc. Thesis Sharif University of Technology Atayizadeh, Hassan (Author) ; Farshchi, Mohammad (Supervisor) ; Salehi, Mohammad Mahdi (Co-Supervisor)
    Abstract
    The purpose of this study is to investigate the efficiency of a flamelet method along with the LES1 approach in the modeling of a turbulent premixed flame behind the bluff-body. In this flame ,because of the high turbulence intensity and fuel dilution, there is a significant interaction between the turbulence and chemical kinetics. In this study, first, the cold flow is modeled using LES and RANS2 approaches. Then, using the Flame-Generated Manifold (FGM) model and a presumed PDF model, the turbulent reacting flow is simulated.Comparison of the results of the LES and RANS showed that the accuracy of the LES method in simulating the physics of turbulent flow is much higher than RANS, but its... 

    Unsteady Analysis of a Slinger Combustion Chamber by the Chemical Reactor Network Model

    , M.Sc. Thesis Sharif University of Technology Soroush, Fariborz (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    Up to early seventies, Gas turbine combustor design was very time consuming and costly process including trial and errors through test rigs. Over the time analytical-experimental relationships take place as one of the key rules in the design processes. With the increasing power of computer calculations, computational fluid dynamics find its way in the procedure. Obtaining a deeper understanding of flow conditions and geometry inside the chamber, a great reduction in production time and cost of revisions to rigs and samples were achieved. Finding a precise prediction of polluting elements like NOx (less than 10 ppm) after many run hours and enormous computing resources, CFD methods must... 

    Investigating the effect of the heat transfer correlation on the predictability of a multi-zone combustion model of a hydrogen-fuelled spark ignition engine

    , Article Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ; Volume 230, Issue 1 , 2016 , Pages 70-81 ; 09544070 (ISSN) Tabatabaie, T ; Ehteram, M. A ; Hosseini, V ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    Research on the heat transfer in hydrogen-fuelled spark ignition engines indicates that the two most common heat transfer correlations, namely the Annand correlation and the Woschni correlation, cannot perfectly predict the heat flux during the engine cycle. This questions the accuracy of thermodynamic hydrogen engine models because the heat transfer is one of the important submodels in the development of a thermodynamic model. In addition, the Hohenberg correlation and the Shudo-Suzuki correlation have not been evaluated for hydrogen engines. In this study, a thermodynamic model of the closed cycle of a spark ignition engine is developed with a multi-zone combustion submodel to predict the... 

    Turbulent Partially Premixed Flame Modeling Behind a Bluff-Body Using the Flamelet Approach

    , M.Sc. Thesis Sharif University of Technology Ghadimi, Mohammad Reza (Author) ; Salehi, Mohammad Mehdi (Supervisor)
    Abstract
    This thesis presents turbulent partially premixed combustion modeling behind a bluff-body by using the Flamelet Generated Manifold. The objective of the present work is to develop a 4D FGM program to simulate partially premixed combustion at a reasonable computational cost. Pre-tabulated data of this manifold is obtained by using a correlated joint PDF. An in-house code is developed to build a pre-tabulated library in conjunction with a correlated PDF. Also, an exclusive OpenFOAM solver is created by employing the PIMPLE algorithm. This solver provides the link of the computational domain with the pre-tabulated chemistry. This program is used to simulate Cambridge-Sandia stratified burner... 

    Experimental and Numerical Analysis to Optimize an Existing Rotating Detonation Combustion Chamber

    , M.Sc. Thesis Sharif University of Technology Fahim, Mohammad (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    By creating constant volume combustion, the rotating detonation chamber increases efficiency compared to conventional constant pressure chambers. The RDC is smaller and mechanically more straightforward than the other detonation chambers, such as the pulse chamber. In the current research, an RDC with an outer diameter of 76 mm and an inner diameter of 64 mm, using hydrogen and air as fuel and oxidizer, has been successfully tested and data collected in the laboratory. Data acquisition has been made by high-frequency and pressure measurement facilities. In the following, the chamber has been optimized and improved by applying parametric studies (equivalence ratio, mass flow rate, channel... 

    Finite element volume analysis of propane preheated air flame passing through a minichannel

    , Article ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2014, Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting ; 2014 Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    A hybrid finite-element-volume FEV method is extended to simulate turbulent non-premixed propane air preheated flame in a minichannel. We use a detailed kinetics scheme, i.e. GRI mechanism 3.0, and the flamelet model to perform the combustion modeling. The turbulence-chemistry interaction is taken into account in this flamelet modeling using presumed shape probability density functions PDFs. Considering an upwind-biased physics for the current reacting flow, we implement the physical influence upwinding scheme PIS to estimate the cell-face mixture fraction variance in this study. To close the turbulence closure, we employ the two-equation standard κ-ε turbulence model incorporated with... 

    Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend

    , Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the... 

    Investigation of fuel dilution in ethanol spray MILD combustion

    , Article Applied Thermal Engineering ; Volume 159 , 2019 ; 13594311 (ISSN) Motaalegh Mahalegi, H. K ; Mardani, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    MILD combustion is a promising technique for low heating value fuels. In this paper, spray MILD combustion of diluted liquid fuel is numerically studied. The modelling framework is based on the RANS approach, the EDC combustion model with a skeletal chemical mechanism, and the Lagrangian tracking of droplets. The validated numerical model is used to simulate the combustion of ethanol diluted with water is studied for different oxidizer temperatures and O2 concentrations under MILD condition. Results indicate that a low-level fuel dilution up to 5 percent has tendency toward expansion of MILD region, but higher degrees fuel dilution within the range of 5–20 percent results in a reduction of... 

    A Priori Investigation of Laminar Flamelet Decomposition and Conditional Source-term Estimation Methods in Turbulent Premixed Flames

    , M.Sc. Thesis Sharif University of Technology Mahdipour, Amir Hossein (Author) ; Salehi, Mohammad Mahdi (Supervisor)
    Abstract
    An a priori analysis is performed to assess the performances of Laminar Flamelet Decomposition (LFD) and Conditional Source-term Estimation (CSE) methods in predicting conditional and unconditional filtered production rates and mass fractions for turbulent premixed flames over a wide range of Karlovitz numbers, which is an indicator for the level of turbulence-chemistry interaction in premixed combustion.In LFD, it is assumed that a turbulent flame is composed of strained laminar flamelets. By presuming the functional form of the probability density function (PDF) of the progress variable and inverting the integral equation for the unconditional filtered mass fractions of one of the species,... 

    Numerical study of the pseudo-boiling phenomenon in the transcritical liquid oxygen/gaseous hydrogen flame

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2020 Zeinivand, H ; Farshchi, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    The interactions and effects of turbulent mixing, pseudo-boiling phenomena, and chemical reaction heat release on the combustion of cryogenic liquid oxygen and gaseous hydrogen under supercritical pressure conditions are investigated using RANS simulations. Comparisons of the present numerical simulation results with available experimental data reveal a reasonably good prediction of a supercritical axial shear hydrogen-oxygen flame using the standard k-ε turbulence model and the eddy dissipation concept combustion model with a 23 reaction steps kinetics for H2-O2 reaction. The present simulation qualitatively reproduced oxygen injection and its reaction with the co-flowing hydrogen, which is... 

    Dynamic adjustment of the Eddy Dissipation Concept model for turbulent/combustion interactions in mixed combustion regimes

    , Article Combustion and Flame ; Volume 241 , 2022 ; 00102180 (ISSN) Mardani, A ; Nazari, A ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    The Eddy Dissipation Concept (EDC) combustion model, in comparison with some other combustion models, has drawn attention, especially for the Moderate or Intense low oxygen Dilution (MILD) combustion. The original formulation of the EDC combustion model is not developed for the MILD combustion regime, and a revision of the model could be considered. In this study, the effect of the characteristic frequency on the EDC combustion model has been investigated, and some parametric studies on the ratios of length and time scales of the fine structures to the Kolmogorov scales have been performed. Results revealed that finding optimum model constants for all combustion field with a wide range of... 

    Improvement and experimental validation of a multi-zone model for combustion and NO emissions in CNG fueled spark ignition engine

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 4 , 2012 , Pages 1205-1212 ; 1738494X (ISSN) Asgari, O ; Hannani, S. K ; Ebrahimi, R ; Sharif University of Technology
    2012
    Abstract
    This article reports the experimental and theoretical results for a spark ignition engine working with compressed natural gas as a fuel. The theoretical part of this work uses a zero-dimensional, multi-zone combustion model in order to predict nitric oxide (NO) emission in a spark ignition (SI) engine. The basic concept of the model is the division of the burned gas into several distinct zones for taking into account the temperature stratification of the burned mixture during combustion. This is especially important for accurate NO emissions predictions, since NO formation is strongly temperature dependent. During combustion, 12 products are obtained by chemical equilibrium via Gibbs energy...