Loading...
Search for: combustion-process
0.011 seconds

    Numerical Determination and Study of the Stability Map of a Slinger Combustor

    , M.Sc. Thesis Sharif University of Technology Moradi Beyromabadi, Ali (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    The purpose of this study is to identify the combustion process, the role of different parts of this combustor and how the flame is stable in a slinger combustion chamber numerically. For this purpose, fuel injection, correct study of spatial distribution of droplets and evaporation process by Eulerian-Lagrangian multiphase model and mixing process, along with turbulence flow field by RANS method have been investigated. In this study, the actual geometry of the chamber is extracted and its effects on the outlet temperature distribution, chamber pressure drop, fuel evaporation region, etc. are studied.This simulation was performed by Fluent software due to its great ability to model... 

    Thermodynamic analysis of combustion processes and pollutants emission using nonlinear optimization approach

    , Article Asia-Pacific Journal of Chemical Engineering ; Volume 7, Issue 1 , AUG , 2012 , Pages 80-85 ; 19322135 (ISSN) Farshchi Tabrizi, F ; Zolfaghari Sharak, A ; Zolfaghari Shahrak, A ; Sharif University of Technology
    2012
    Abstract
    Mathematical formulation and modeling of combustion processes is an important tool in the understanding of this phenomenon. Determination of equilibrium temperature and composition is often the first stage in calculation of combustion characteristics. There are number of different techniques for simulation of combustion process. In this study a basic model has been developed based on the minimization of Gibb's free energy to simulate the combustion processes. A nonlinear mathematical optimization has been developed based on Lagrange multipliers and solved using Quasi-Newton method written in MathCAD environment. The effect of various parameters such as initial temperature, pressure, and... 

    The effect of fractures' geometrical properties on the recovery mechanism of the top-down in situ combustion process

    , Article Petroleum Science and Technology ; Volume 30, Issue 2 , Feb , 2011 , Pages 147-158 ; 10916466 (ISSN) Fatemi, S. M ; Kharrat, R ; Sharif University of Technology
    2011
    Abstract
    The top-down in situ combustion (ISC) involves the stable propagation of the combustion front from the top vertical injector to the bottom horizontal producer. Apart from laboratory studies in conventional sandstones, no application of the process in fractured carbonates has been addressed yet. The authors modified a successful combustion tube history matched model of an Iranian low-permeable heavy oil reservoir called Kuh-E-Mond to investigate the feasibility of ISC in fractured carbonate reservoirs mimicking block-scale combustion cells. Effects of fractured geometrical properties such as orientation, location, extension, density, spacing, and dispersion were considered. Results confirmed... 

    Process integration of membrane reactor for steam methane reforming for hydrogen separation with CO2 capture in power production by natural gas combined cycle

    , Article 9th International Conference on Greenhouse Gas Control Technologies, GHGT-9, Washington DC, 16 November 2008 through 20 November 2008 ; Volume 1, Issue 1 , 2009 , Pages 279-286 ; 18766102 (ISSN) Najmi, B ; Soltanieh, M ; US Department of Energy ; Sharif University of Technology
    2009
    Abstract
    In this paper simulation results for integration of CO2 pre-combustion capture by steam methane reforming (SMR) in membrane reactors (MR) with natural gas fired combined cycle (NGCC) power plants are presented. The integrated combined cycle was simulated by GTPRO (Thermoflow) simulator along with the results from simulation of membrane reactor for SMR process developed in this work. The results show that the overall efficiency of the integrated combined cycles decreased due to the energy required for SMR process. On the other hand, by integration of MR in combined cycles, emissions of CO2 to the atmosphere can be avoided. © 2009 Elsevier Ltd. All rights reserved  

    Macroscopic recovery mechanisms of in-situ combustion process in heavy oil fractured systems: Effect of fractures geometrical properties and operational parameters

    , Article Society of Petroleum Engineers - SPE EOR Conference at Oil and Gas West Asia 2012, OGWA - EOR: Building Towards Sustainable Growth ; Volume 2 , 2012 , Pages 593-617 ; 9781622760473 (ISBN) Fatemi, S. M ; Kharrat, R ; Vossoughi, S ; Ghotbi, C ; Sharif University of Technology
    SPE  2012
    Abstract
    The In-Situ Combustion (ISC) as a thermal EOR process has been studied deeply in heavy oil reservoirs and is a promising method for certain non-fractured sandstones. However, its feasibility in fractured carbonates remained questionable. The aim of the present work was to understand the recovery mechanisms of ISC in fractured models and to evaluate the effect of fractures geometrical properties such as orientation, density, location and networking on the ISC recovery performance. Combustion parameters of a fractured low permeable carbonate heavy oil reservoir in Middle East called KEM; applied to simulation study. Simulator has been validated with KEM combustion tube experimental data and... 

    An experimental study on the effect of hydrogen enrichment on diesel fueled HCCI combustion

    , Article International Journal of Hydrogen Energy ; Volume 36, Issue 21 , 2011 , Pages 13820-13830 ; 03603199 (ISSN) Guo, H ; Hosseini, V ; Neill, W. S ; Chippior, W. L ; Dumitrescu, C. E ; Sharif University of Technology
    Abstract
    This paper experimentally investigates the influence of hydrogen enrichment on the combustion and emission characteristics of a diesel HCCI engine using a modified Cooperative Fuel Research (CFR) engine. Three fuels, n-heptane and two middle distillates with cetane numbers of 46.6 and 36.6, are studied. The results show that hydrogen enrichment retards the combustion phasing and reduces the combustion duration of a diesel HCCI engine. Besides, hydrogen enrichment increases the power output and fuel conversion efficiency, and improves the combustion stability. However, hydrogen enrichment may narrow the operational compression ratio range and increase the knocking tendency. Both the overall... 

    Fully implicit compositional thermal simulator using rigorous multiphase calculations

    , Article Scientia Iranica ; Volume 18, Issue 3 C , June , 2011 , Pages 509-517 ; 10263098 (ISSN) Khorsandi Kouhanestani, S ; Bozorgmehry Boozarjomehry, R ; Pishvaie, M. R ; Sharif University of Technology
    2011
    Abstract
    Simulation of the in-situ combustion process is one of the most complex simulations amongst other reservoir flow simulations. Accurate simulation of the process is critical to obtain a successful implementation of the in-situ combustion process. Several factors impact performance of the simulation of this process. First are all the numerical models used for different sub-processes, such as reactions, fluid phase behavior, heat loss to surrounding formations and fluid physical properties. In the previous numerical models of the in-situ combustion process, very simplified models were used for the phase behavior of the fluid. Recent studies show that the fluid phase behavior model has a great... 

    Studies of Iranian heavy oils pertinent to reservoir conditions for their auto-ignition to initiate fire flooding

    , Article Chemical Engineering Communications ; Volume 196, Issue 5 , 2009 , Pages 643-657 ; 00986445 (ISSN) Price, D ; Razzaghi, S ; Kharrat, R ; Rashtchian, D ; Vossoughi, S ; Sharif University of Technology
    2009
    Abstract
    In this work, the potential for the auto-ignition of Iranian heavy oil during in situ combustion (ISC) process conditions was studied. Kinetic studies were carried out using thermal analysis techniques. Effects of oxygen partial pressure, reservoir pressure, and clay on the auto-ignition condition were investigated. Based on the experimental results obtained, a kinetic equation was derived for each of the different oil samples in the presence of different sands. The effect of partial pressure of oxygen in the injected air showed that at atmospheric pressure, low temperature combustion (LTC) was initiated at 275°C. Also, enriching the injected air by oxygen lowers the initial LTC temperature...