Loading...
Search for: compressible-material
0.005 seconds

    Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 3 , 2010 , Pages 591-602 ; 09544062 (ISSN) Darijani, H ; Naghdabadi, R ; Kargarnovin, M. H ; Sharif University of Technology
    Abstract
    In this article, a strain energy density function of the Saint Venant-Kirchhoff type is expressed in terms of a Lagrangian deformation measure. Applying the governing postulates to the form of the strain energy density, the mathematical expression of this measure is determined. It is observed that this measure, which is consistent with the strain energy postulates, is a strain type with the characteristic function more rational than that of the Seth-Hill strain measures for hyperelastic materials modelling. In addition, the material parameters are calculated using a novel procedure that is based on the correlation between the values of the strain energy density (rather than the stresses)... 

    Numerical evaluation of the ultimate load of concrete funicular shells of circular plan

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 174, Issue 1 , 2021 , Pages 5-11 ; 09650911 (ISSN) Javid, A ; Mofid, M ; Sharif University of Technology
    ICE Publishing  2021
    Abstract
    A special type of shell structure - a concrete shallow funicular shell of circular plan - is considered in this paper. Funicular shells carry their dead weight only by in-plane compression forces. Numerical analysis of funicular shells was performed using the non-linear finite-element method, considering both geometric and material non-linearities. A circular-plan concrete funicular shell unit was also constructed and its ultimate central concentrated load is determined. The ultimate load of the shell unit predicted by the numerical model was very close to the experimentally determined ultimate load, thus confirming the validity of the numerical model. The numerical results revealed the... 

    Modeling of visco-hyperelastic behavior of foams

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 12 , 2009 , Pages 425-433 ; 9780791848739 (ISBN) Anani, Y ; Asghari, M ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    In this paper, a new visco-hyperelastic constitutive law for describing the rate dependent behavior of foams is proposed. The proposed model was based on a phenomenological Zener model: a hyperelastic equilibrium spring, which describes the steady-state, long-term response, parallel to a Maxwell element, which captures the rate-dependency. A nonlinear viscous damper connected in series to a hyperelastic intermediate spring, controls the rate-dependency of the Maxwell element. Therefore, the stress is the sum of equilibrium stress on the equilibrium spring and overstress on the intermediate spring. In hyperelastic theory stress is not calculated directly as in the case of small-strain, linear...