Loading...
Search for: compressible-navier-stokes
0.007 seconds

    Null Controllability and Stabilizability of Compressible Navier-stokes System in One Dimension

    , M.Sc. Thesis Sharif University of Technology Hosseini Khajouei, Narges Sadat (Author) ; Hesaraki, Mahmoud (Supervisor)
    Abstract
    In this thesis we study the exponential stabilization of the one dimensional compressible Navier-Stokes system, in a bounded interval locally around a constant steady state by a localized distributed control acting only in the velocity equation. In fact this is an analysis of a paper that published by Shirshendu Chowdhury, Debayan Maity, Mithily Ramaswamy and Jean-Pierre Raymond in Journal of Differential Equations. We determine a linear feedback law able to stabilize a nonlinear transformed system. Coming back to the original nonlinear system, we obtain a nonlinear feedback law able to stabilize locally this nonlinear system. The result is providing feedback control laws stabilizing... 

    Solving combined natural convection-radiation in participating media considering the compressibility effects

    , Article 52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014 ; 13- 17 January , 2014 ; ISBN: 9781624102561 Darbandi, M ; Abrar, B ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this work, we aim to study the effect of temperature gradients on the combined natural convection-radiation heat transfer problem in participating media. To impose this combined effect, we first solve the radiative transfer equation in an absorbing and emitting media. Then, we suitably add the radiation source terms to the energy equation and solve the fluid flow equations. Literature shows that many incompressible algorithms use the Boussinesq assumption to model the thermobuoyant force; however, the validity of this assumption is limited to cases with low temperature gradient distributions. Evidently, Boussinesq assumption would result in considerable errors in high temperature gradient... 

    Multi-point optimization of lean and sweep angles for stator and rotor blades of an axial turbine

    , Article Proceedings of the ASME Turbo Expo ; Vol. 2C, issue , 2014 Asgarshamsi, A ; Hajilouy-Benisi, A ; Assempour, A ; Pourfarzaneh, H
    Abstract
    In this research, numerical optimization of the rear part of a gas turbine, consisting of a single stage axial turbine is carried out. Automated aerodynamic shape optimization is performed by coupling a CFD flow simulation code with the Genetic Algorithm. An effective multi-point optimization method to improve efficiency and/or pressure ratio of the axial turbine is performed. Some variations of optimization parameters such as lean and sweep angels of stator and rotor blades are accomplished. Furthermore, during the optimization process, three-dimensional and turbulent flow field is numerically investigated using a compressible Navier-Stokes solver. The gas turbine experimental... 

    The uncertainties of continuum-based cfd solvers to perform microscale hot-wire anemometer simulations in flow fields close to transitional regime

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Darbandi, M ; Ghorbani, M. R ; Darbandi, H ; Heat Transfer Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In this study, we simulate the flow and heat transfer during hot-wire anemometry and investigate its thermal behavior and physics using the Computational Fluid Dynamics (CFD) tool. In this regard, we use the finite-volume method and solve the compressible Navier-Stokes equations numerically in slightly non-continuum flow fields. We do not use any slip flow model to include the transitional flow physics in our simulations. Using the CFD method, we simulate the flow over hot-wire and evaluate the uncertainty of CFD in thermal simulation of hot-wire in low transitional flow regimes. The domain sizes and the mesh distributions are carefully chosen to avoid boundary condition error appearances.... 

    A numerical study on fluid flow and acoustic characteristics of a supersonic impinging jet using vorticity confinement

    , Article Acta Acustica united with Acustica ; Volume 105, Issue 6 , 2019 , Pages 1127-1136 ; 16101928 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    S. Hirzel Verlag GmbH  2019
    Abstract
    The objective of this work is to numerically study the fluid flow and acoustic field of a supersonic impinging jet by applying the vorticity confinement (VC) method. For this aim, the three-dimensional compressible Navier-Stokes equations with the incorporation of the VC method are considered and the resulting system of equations is solved by using the sixth-order compact finite-difference scheme. To eliminate the numerical instability, a low-pass high-order filter is used. The nonreflective boundary conditions are applied for all the free boundaries and the radiated sound field is obtained by the Kirchhoff surface integration. Comparisons of the present results with the experimental data... 

    A numerical study on fluid flow and acoustic characteristics of a supersonic impinging jet using vorticity confinement

    , Article Acta Acustica united with Acustica ; Volume 105, Issue 6 , 2019 , Pages 1127-1136 ; 16101928 (ISSN) Sadri, M ; Hejranfar, K ; Ebrahimi, M ; Sharif University of Technology
    S. Hirzel Verlag GmbH  2019
    Abstract
    The objective of this work is to numerically study the fluid flow and acoustic field of a supersonic impinging jet by applying the vorticity confinement (VC) method. For this aim, the three-dimensional compressible Navier-Stokes equations with the incorporation of the VC method are considered and the resulting system of equations is solved by using the sixth-order compact finite-difference scheme. To eliminate the numerical instability, a low-pass high-order filter is used. The nonreflective boundary conditions are applied for all the free boundaries and the radiated sound field is obtained by the Kirchhoff surface integration. Comparisons of the present results with the experimental data...