Loading...
Search for: compression-load
0.007 seconds

    A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels

    , Article Journal of Biomechanics ; Volume 49, Issue 13 , 2016 , Pages 3074-3078 ; 00219290 (ISSN) Ignasiak, D ; Ferguson, S. J ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    A number of musculoskeletal models of the human spine have been used for predictions of lumbar and muscle forces. However, the predictive power of these models might be limited by a commonly made assumption; thoracic region is represented as a single lumped rigid body. This study hence aims to investigate the impact of such assumption on the predictions of spinal and muscle forces. A validated thoracolumbar spine model was used with a flexible thorax (T1–T12), a completely rigid one or rigid with thoracic posture updated at each analysis step. The simulations of isometric forward flexion up to 80°, with and without a 20 kg hand load, were performed, based on the previously measured... 

    State-based buckling analysis of beam-like structures

    , Article Archive of Applied Mechanics ; Volume 87, Issue 9 , 2017 , Pages 1555-1565 ; 09391533 (ISSN) Ranjbaran, A ; Ranjbaran, M ; Sharif University of Technology
    Abstract
    Beam, column, plate, and any other structure, under full or partial compressive loading, are prone to failure by the buckling phenomenon. At the instant of failure, the structure may be in unpredictable elastic, elastic–plastic, full plastic, cracked, or other forms of deterioration state. Therefore, in spite of so much study, there is no definite solution to the problem. In this paper a unified, simple, and exact theory is proposed where buckling is considered as the change of state of structure between intact and collapsed states, and then the buckling capacity is innovatively expressed via states and phenomena functions, which are explicitly defined as functions of state variable. The... 

    Stability analysis of carbon nanotubes using a hybrid atomistic-structural element

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 366-375 ; 17469392 (ISSN) Sadeghi, M ; Naghdabadi, R ; Sharif University of Technology
    2010
    Abstract
    In this paper, a hybrid atomistic-structural element for studying the mechanical behaviour of carbon nanotubes is introduced. Non-linear formulation for this element is derived based on empirical inter-atomic potentials. This hybrid element is capable of taking into account the non-linear nature of inter-atomic forces as well as the non-linearity arising from large deformations. Using these capabilities, the stability analysis of carbon nanotubes under axial compressive loading is performed and the post-buckling behaviour is predicted. Also, the dependence of axial buckling force on nanotube radius is shown  

    Experimental and numerical study of shear crack propagation in concrete specimens

    , Article Computers and Concrete ; Volume 20, Issue 1 , 2017 , Pages 57-63 ; 15988198 (ISSN) Haeri, H ; Sarfarazi, V ; Bagher Shemirani, A ; Sharif University of Technology
    Abstract
    A coupled experimental-numerical study on shear fracture in concrete specimens with different geometries is carried out. The crack initiation, propagation and final breakage of concrete specimens are experimentally studied under compression loading. The load-strain and the strength of the specimens are experimentally measured, indicating decreasing effects of the shear behavior on the failure load of the specimen. The effects of specimen geometries on the shear fracturing path in the concrete specimens are also investigate. Numerical models using an indirect boundary element method are made to evaluate the crack propagation paths of concrete specimens. These numerical results are compared... 

    Improving the behavior of buckling restrained braces through obtaining optimum steel core length

    , Article Structural Engineering and Mechanics ; Volume 65, Issue 4 , February , 2018 , Pages 401-408 ; 12254568 (ISSN) Mirtaheri, M ; Sehat, S ; Nazeryan, M ; Sharif University of Technology
    Techno Press  2018
    Abstract
    Concentric braced frames are commonly used in steel structures to withstand lateral forces. One of the drawbacks of these systems is the possibility that the braces are buckled under compressive loads, which leads to sudden reduction of the bearing capacity of the structure. To overcome this deficiency, the idea of the Buckling Restrained Brace (BRB) has been proposed in recent years. The length of a BRB steel core can have a significant effect on its overall behavior, since it directly influences the energy dissipation capability of the member. In this study, numerical methods have been utilized for investigation of the optimum length of BRB steel cores. For this purpose, BRBs with... 

    Biomechanical assessment of the niosh lifting equation in asymmetric load-handling activities using a detailed musculoskeletal model

    , Article Human Factors ; Volume 61, Issue 2 , 2019 , Pages 191-202 ; 00187208 (ISSN) Behjati, M ; Arjmand, N ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    Objective: To assess adequacy of the National Institute for Occupational Safety and Health (NIOSH) Lifting Equation (NLE) in controlling lumbar spine loads below their recommended action limits during asymmetric load-handling activities using a detailed musculoskeletal model, that is, the AnyBody Modeling System. Background: The NIOSH committee employed simplistic biomechanical models for the calculation of the spine compressive loads with no estimates of the shear loads. It is therefore unknown whether the NLE would adequately control lumbar compression and shear loads below their recommended action limits during asymmetric load-handling activities. Method: Twenty-four static stoop lifting... 

    Numerical Modelling on Effects of Elevated Temperatures on the Performance of Concrete-filled Pultruded GFRP Tubular Columns

    , M.Sc. Thesis Sharif University of Technology Mollakhalili, Arian (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Concrete-filled FRP tubes have gained popularity among structures in areas with harsh environmental condition. Despite their unique material properties such as resistance to corrosion, noticeable axial stiffness, and durability, FRP materials have poor resistance to elevated temperatures. This paper presents numerical investigations on the behavior and capacity of concrete-filled pultruded GFRP tubes (CFGFTs) after exposure to elevated temperatures under concentric compression. Variables in this study were the tube’s thickness of 3, 5, and 7mm, the infill concrete’s compressive strengths of 30 and 60MPa, and the exposure temperature of 25, 100, 200, 300, and 400°C. The results in this study... 

    Constitutive modeling of hardening-relaxation response of asphalt concrete in cyclic compressive loading

    , Article Construction and Building Materials ; Volume 137 , 2017 , Pages 169-184 ; 09500618 (ISSN) Karimi, M. M ; Tabatabaee, N ; Jahangiri, B ; Darabi, M. K ; Sharif University of Technology
    Abstract
    Cyclic loading on asphalt concrete materials with a longer relaxation time and lower remaining stress lead to higher viscoelastic strain recovery. Consequently, more aggregate reorientation occurs and the rate of viscoplastic strain increases in subsequent cycles. The present study proposes a hardening relaxation constitutive relationship (fHR) as a function of accumulated recovered viscoelastic strain εrve based on experimental observation. This model captures the initiation and evolution of hardening-relaxation during the relaxation time and/or stress reduction under cyclic loading. The model was then coupled with viscoelastic, viscoplastic and viscodamage constitutive relationships. The... 

    Can lumbosacral orthoses cause trunk muscle weakness? A systematic review of literature

    , Article Spine Journal ; Volume 17, Issue 4 , 2017 , Pages 589-602 ; 15299430 (ISSN) Azadinia, F ; Ebrahimi Takamjani, E ; Kamyab, M ; Parnianpour, M ; Cholewicki, J ; Maroufi, N ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Background Wearing lumbosacral orthosis (LSO) is one of the most common treatments prescribed for conservative management of low back pain. Although the results of randomized controlled trials suggest effectiveness of LSO in reducing pain and disability in these patients, there is a concern that prolonged use of LSO may lead to trunk muscle weakness and atrophy. Purpose The present review aimed to evaluate available evidence in literature to determine whether LSO results in trunk muscle weakness or atrophy. Study Design This is a systematic review. Methods A systematic search of electronic databases including PubMed, Scopus, ScienceDirect, and Medline (via Ovid) followed by hand search of... 

    Sloshing effects on supersonic flutter characteristics of a circular cylindrical shell partially filled with liquid

    , Article International Journal for Numerical Methods in Engineering ; 2018 ; 00295981 (ISSN) Zarifian, P ; Ovesy, H. R ; Dehghani Firouz Abadi, R ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    This paper aims to revisit the effect of sloshing on the flutter characteristics of a partially liquid-filled cylinder. A computational fluid-structure interaction model within the framework of the finite element method is developed to capture fluid-structure interactions arising from the sloshing of the internal fluid and the flexibility of its containing structure exposed to an external supersonic airflow. The internal liquid sloshing is represented by a more sophisticated model, referred to as the liquid sloshing model, and the shell structure is modeled by Sanders' shell theory. The aerodynamic pressure loading is approximated by the first-order piston theory. The initial geometric... 

    Stability of single-walled carbon nanopeapods under combined axial compressive load and external pressure

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 41, Issue 3 , 2009 , Pages 513-517 ; 13869477 (ISSN) Najafi Sohi, A ; Naghdabadi, R ; Sharif University of Technology
    Elsevier  2009
    Abstract
    In this paper, the axial stability of single-walled carbon nanopeapods is studied based on an elastic continuum shell model. In order to model the non-bonded van der Waals interactions between host carbon nanotube and guest fullerenes, an equivalent pressure distribution is proposed and incorporated in the model. Deriving an explicit equation for the determination of critical axial load, it is concluded that the axial stability of a single-walled carbon nanopeapod is less than that of a carbon nanotube under otherwise identical conditions. In addition, it is shown that applying external pressure to the carbon nanopeapod decreases the axial compressive stability through reducing the critical... 

    Sloshing effects on supersonic flutter characteristics of a circular cylindrical shell partially filled with liquid

    , Article International Journal for Numerical Methods in Engineering ; Volume 117, Issue 8 , 2019 , Pages 901-925 ; 00295981 (ISSN) Zarifian, P ; Ovesy, H. R ; Firouz Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    This paper aims to revisit the effect of sloshing on the flutter characteristics of a partially liquid-filled cylinder. A computational fluid-structure interaction model within the framework of the finite element method is developed to capture fluid-structure interactions arising from the sloshing of the internal fluid and the flexibility of its containing structure exposed to an external supersonic airflow. The internal liquid sloshing is represented by a more sophisticated model, referred to as the liquid sloshing model, and the shell structure is modeled by Sanders' shell theory. The aerodynamic pressure loading is approximated by the first-order piston theory. The initial geometric... 

    Vibration control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes

    , Article 13th IFAC Workshop on Intelligent Manufacturing Systems, IMS 2019, 12 August 2019 through 14 August 2019 ; Volume 52, Issue 10 , 2019 , Pages 382-387 ; 24058963 (ISSN) Mirtalebi, H ; Ebrahimi Mamaghani, A ; Ahmadian, M. T ; Barari A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the last decade, extensive attention is devoted to intelligibly designed materials of macro/micro-structures containing the fluid flow. In this study, intelligent control and vibrational stability of cantilevered fluid conveying macro/micro-tubes utilizing axially functionally graded (AFG) materials are considered. The governing equation of motion of the system is derived based on modified couple stress theory and then is discretized using Galerkin method. A detailed investigation is carried out to elaborate the influence of various parameters such as material properties, axial compressive load, and Pasternak foundation on the dynamical behavior of the system, all of which are influential... 

    Numerical and analytical simulation of multilayer cellular scaffolds

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 42, Issue 5 , 2 May , 2020 Khanaki, H. R ; Rahmati, S ; Nikkhoo, M ; Haghpanahi, M ; Akbari, J ; Sharif University of Technology
    Springer  2020
    Abstract
    Due to the advent and maturity of the additive manufacturing technology, it is possible now to construct complex microstructures with unprecedented accuracy. In addition, to the influence of network unit cell types and porosities in recent years, researchers have studied the number of scaffold layers fabricated by additive manufacturing on mechanical properties. The objective of this paper is to assess the numerical and analytical simulations of the multilayer scaffolds. For this purpose, 54 different regular scaffolds with a unit cell composed of multilayer scaffolds were simulated under compressive loading and compared with the analytical relationships based on the Euler–Bernoulli and... 

    Stability analysis of carbon nanotubes under electric fields and compressive loading

    , Article Journal of Physics D: Applied Physics ; Volume 41, Issue 20 , 2008 ; 00223727 (ISSN) Sadeghi, M ; Ozmaian, M ; Naghdabadi, R ; Sharif University of Technology
    2008
    Abstract
    The mechanical stability of conductive, single-walled carbon nanotubes (SWCNTs) under applied electric field and compressive loading is investigated. The distribution of electric charges on the nanotube surface is determined by employing a method based on the classical electrostatic theory. For mechanical stability analysis, a hybrid atomistic-structural element is proposed, which takes into account the nonlinear features of the stability. Nonlinear stability analysis based on an iterative solution procedure is used to determine the buckling force. The coupling between electrical and mechanical models is accomplished by adding Coulomb interactions to the mechanical model. The results show... 

    Natural frequencies of stiffened and unstiffened laminated composite plates

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 7 , 2007 , Pages 593-600 ; 0791843017 (ISBN) Ahmadian, M. T ; Pirbodaghi, T ; Pak, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    In this study the free vibration of laminated composite plates with and without stiffeners subjected to axial loads is carried out using finite element method. The plates are stiffened by laminated composite strip and Timoshenko beam. The plates and the strips are modeled with rectangular 9 noded isoparametric quadratic elements with three degrees of freedom per node and the Timoshenko beam is modeled with linear 2 noded isoparametric quadratic elements with 2 degrees of freedom per node. The effects of both shear deformation and rotary inertia are implemented in the modeling of plate and stiffener. The governing differential equations are obtained in terms of the mid-plane displacement... 

    Vibration control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes

    , Article 13th IFAC Workshop on Intelligent Manufacturing Systems, IMS 2019, 12 August 2019 through 14 August 2019 ; Volume 52, Issue 10 , 2019 , Pages 382-387 ; 24058963 (ISSN) Mirtalebi, H ; Ebrahimi Mamaghani, A ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the last decade, extensive attention is devoted to intelligibly designed materials of macro/micro-structures containing the fluid flow. In this study, intelligent control and vibrational stability of cantilevered fluid conveying macro/micro-tubes utilizing axially functionally graded (AFG) materials are considered. The governing equation of motion of the system is derived based on modified couple stress theory and then is discretized using Galerkin method. A detailed investigation is carried out to elaborate the influence of various parameters such as material properties, axial compressive load, and Pasternak foundation on the dynamical behavior of the system, all of which are influential... 

    Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds

    , Article Acta Materialia ; Volume 60, Issue 6-7 , 2012 , Pages 2778-2789 ; 13596454 (ISSN) Amirkhani, S ; Bagheri, R ; Zehtab Yazdi, A ; Sharif University of Technology
    2012
    Abstract
    Rapid prototyping is a promising technique for producing tissue engineering scaffolds due to its capacity to generate predetermined forms and structures featuring distinct pore architectures. The objective of this study is to investigate the influences of different pore geometries and their orientation with respect to the compressive loading direction on mechanical responses of scaffolds. Plastic models of scaffolds with cubic and hexagonal unit cells were fabricated by three-dimensional (3-D) printing. An in situ imaging technique was utilized to study the progressive compressive deformation of the scaffold models. In both cubic and hexagonal geometries, organized buckling patterns relevant... 

    Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches

    , Article Medical Engineering and Physics ; Volume 37, Issue 8 , 2015 , Pages 792-800 ; 13504533 (ISSN) Mohammadi, Y ; Arjmand, N ; Shirazi-Adl, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Various hybrid EMG-assisted optimization (EMGAO) approaches are commonly used to estimate muscle forces and joint loads of human musculoskeletal systems. Use of EMG data and optimization enables the EMGAO models to account for inter- and intra-individual variations in muscle recruitments while satisfying equilibrium requirements. Due to implications in ergonomics/prevention and rehabilitation/treatment managements of low-back disorders, there is a need to evaluate existing approaches. The present study aimed to compare predictions of three different EMGAO and one stability-based optimization (OPT) approaches for trunk muscle forces, spinal loads, and stability. Identical measured... 

    Comparisons of lumbar spine loads and kinematics in healthy and non-specific low back pain individuals during unstable lifting activities

    , Article Journal of Biomechanics ; Volume 144 , 2022 ; 00219290 (ISSN) Heidari, E ; Arjmand, N ; Kahrizi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Evaluation of spinal loads in patients with low back pain (LBP) is essential to prevent further lumbar disorders. Many studies have investigated the relationship between lifting task variables and lumbar spine loads during manual lifting activities. The nature of the external load (stable versus unstable loads) is an important variable that has received less attention. Therefore, the present study aimed to measure trunk kinematics and estimate compressive-shear loads on the lumbar spine under lifting a 120 N stable load and 120 ± 13.63 N sensual unstable load in 16 healthy and 16 non-specific LBP individuals during lifting activities. The maximal lumbar loads were estimated using a...