Loading...
Search for: compressive-axial-load
0.007 seconds

    Stability of single-walled carbon nanopeapods under combined axial compressive load and external pressure

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 41, Issue 3 , 2009 , Pages 513-517 ; 13869477 (ISSN) Najafi Sohi, A ; Naghdabadi, R ; Sharif University of Technology
    Elsevier  2009
    Abstract
    In this paper, the axial stability of single-walled carbon nanopeapods is studied based on an elastic continuum shell model. In order to model the non-bonded van der Waals interactions between host carbon nanotube and guest fullerenes, an equivalent pressure distribution is proposed and incorporated in the model. Deriving an explicit equation for the determination of critical axial load, it is concluded that the axial stability of a single-walled carbon nanopeapod is less than that of a carbon nanotube under otherwise identical conditions. In addition, it is shown that applying external pressure to the carbon nanopeapod decreases the axial compressive stability through reducing the critical... 

    Dynamic analysis of a simply supported beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes techniques under three-to-one internal resonance condition

    , Article Nonlinear Dynamics ; Volume 70, Issue 2 , October , 2012 , Pages 1147-1172 ; 0924090X (ISSN) Mamandi, A ; Kargarnovin, M. H ; Farsi, S ; Sharif University of Technology
    Springer  2012
    Abstract
    In this paper, the Nonlinear Normal Modes (NNMs) analysis for the case of three-to-one (3:1) internal resonance of a slender simply supported beam in presence of compressive axial load resting on a nonlinear elastic foundation is studied. Using the Euler- Bernoulli beam model, the governing nonlinear PDE of the beam's transverse vibration and also its associated boundary conditions are extracted. These nonlinear motion equation and boundary condition relations are solved simultaneously using four different approximate-analytical solution techniques, namely the method of Multiple Time Scales, the method of Normal Forms, the method of Shaw and Pierre, and the method of King and Vakakis. The... 

    Buckling analysis of multilayered functionally graded composite cylindrical shells

    , Article Applied Mechanics and Materials ; Volume 108 , 2012 , Pages 74-79 ; 16609336 (ISSN) ; 9783037852729 (ISBN) Kargarnovin, M. H ; Hashemi, M ; Sharif University of Technology
    Abstract
    In this paper, the buckling analysis of a multilayered composite cylindrical shell which volume fraction of its fiber varies according to power law in longitudinal direction, due to applied compressive axial load is studied. Rule of mixture model and reverse of that are employed to represent elastic properties of this fiber reinforced functionally graded composite. Strain displacement relations employed are based on Reissner-Naghdi-Berry's shell theory. The displacement finite element model of the equilibrium equations is derived by employing weak form formulation. The Lagrangian shape function for in-plane displacements and Hermitian shape function for displacement in normal direction to... 

    Optimization of geometric parameters of latticed structures using genetic algorithm

    , Article Aircraft Engineering and Aerospace Technology ; Volume 83, Issue 2 , 2011 , Pages 59-68 ; 00022667 (ISSN) Hashemian, A. H ; Kargarnovin, M. H ; Jam, J. E ; Sharif University of Technology
    2011
    Abstract
    Purpose - The purpose of this paper is to analyze a squared lattice cylindrical shell under compressive axial load and to optimize the geometric parameters to achieve the maximum buckling load. Also a comparison between buckling loads of a squared lattice cylinder and a solid hollow cylinder with equal weight, length and outer diameter is performed to reveal the superior performance of the squared lattice cylindrical shells. Design/methodology/ approach - A cylindrical lattice shell includes circumferential and longitudinal rods with geometric parameters such as crosssection areas of the rods, distances and angles between them. In this study, the governing differential equation for buckling...