Loading...
Search for: concentrator-photovoltaics
0.004 seconds

    Simulation and Techno–Economical Analysis of an Improved Integrated Concentrated Photovoltaic/Organic Rankine Cycle System

    , M.Sc. Thesis Sharif University of Technology Moltames, Rahim (Author) ; Roshandel, Ramin (Supervisor)
    Abstract
    The combination of photovoltaic technology and Organic Rankine Cycle reduces the temperature of the solar panel and, on the other hand, generates separate electricity from excess heat. The reason for the use of the Organic Rankine Cycle is the low temperature of the heat source. It is not economical to use other cycles like steam Rankine cycle in low-temperature heat sources. To maximize the plant factor of the Organic Rankine cycle system, especially when there is not enough solar radiation, it is possible to utilize the flue gas heat recovery in office buildings and reduce the cost of electricity generation. In this project, the simulation of this system is carried out for the Energy... 

    Optimal design of solar concentrator in multi-energy hybrid systems based on minimum exergy destruction

    , Article Renewable Energy ; Volume 190 , 2022 , Pages 78-93 ; 09601481 (ISSN) Tavakol Moghaddam, Y ; Saboohi, Y ; Fathi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The paper presents a systematic approach to designing an imaging dish for a concentrator photovoltaic (CPV) system to minimize exergy destruction. The designed CPV system uniformly distributes light rays on the receiver (TPV/multi-junction PV) to enhance the conversion technology efficiency and lifetime. To this end, a parametric dish is designed using imaging optics and the numerical solution of a differential equation. Afterward, a Monte Carlo simulation is used to estimate the output energy and exergy of the CPV system with the parametric dish. Finally, an optimization algorithm finds the optimal design parameters to minimize the system's exergy destruction. The optimal design leads to a... 

    Numerical simulation of a concentrating photovoltaic-thermal solar system combined with thermoelectric modules by coupling Finite Volume and Monte Carlo Ray-Tracing methods

    , Article Energy Conversion and Management ; Volume 172 , 2018 , Pages 343-356 ; 01968904 (ISSN) Shadmehri, M ; Narei, H ; Ghasempour, R ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    During the last decades, the adoption of more strict safety and environmental regulations, as well as a rise in energy costs, sparked an increasing interest in the design of renewable energies systems, particularly solar systems, to supply both electrical power and heat. Because of their capability to simultaneously supply both electricity and heat, concentrating photovoltaic-thermal and thermoelectric hybrid systems have recently attracted scholarly attention. In this study, a detailed three-dimensional computational model of a novel concentrating photovoltaic-thermal solar system combined with thermoelectric modules in an integrated design with a triangular absorber and corresponding... 

    A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design

    , Article Renewable Energy ; Volume 113 , 2017 , Pages 822-834 ; 09601481 (ISSN) Mohsenzadeh, M ; Shafii, M. B ; Jafari mosleh, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The use of solar energy concentration systems for achieving performance enhancements in the Photovoltaic/thermal hybrid solar systems and reduction of initial costs is an idea that has been studied for years. In this article a new structure for parabolic trough photovoltaic/thermal collector is proposed and its thermal and electrical performances are experimentally investigated. The receiver of this concentrator contains a triangular channel with an outer surface covered with photovoltaic cells and thermoelectric modules with a specific arrangement so that in addition to absorbing heat, a larger portion of the solar radiation is directly converted to electricity. Hence, the performance of... 

    Techno-economic analysis of a modified concentrating photovoltaic/organic Rankine cycle system

    , Article International Journal of Ambient Energy ; 17 February , 2020 Moltames, R ; Roshandel, R ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    The combination of concentrating photovoltaic (CPV) and organic Rankine cycle (ORC) systems not only leads to a reduction of photovoltaic (PV) operating temperature, but also leads to an additional electric power production. Increase in the temperature of the PV decreases its operating efficiency, while increases the ORC efficiency. Therefore, there is an optimum temperature in which the total electricity produced by the combined system will be maximum. In this study, a modified CPV/ORC system is simulated and the optimum operating temperature of the PV panel is determined for different PV efficiencies. The most striking result is that increase in the PV nominal efficiency will result in the... 

    Techno-economic analysis of a modified concentrating photovoltaic/organic Rankine cycle system

    , Article International Journal of Ambient Energy ; Volume 43, Issue 1 , 2022 , Pages 2026-2038 ; 01430750 (ISSN) Moltames, R ; Roshandel, R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The combination of concentrating photovoltaic (CPV) and organic Rankine cycle (ORC) systems not only leads to a reduction of photovoltaic (PV) operating temperature, but also leads to an additional electric power production. Increase in the temperature of the PV decreases its operating efficiency, while increases the ORC efficiency. Therefore, there is an optimum temperature in which the total electricity produced by the combined system will be maximum. In this study, a modified CPV/ORC system is simulated and the optimum operating temperature of the PV panel is determined for different PV efficiencies. The most striking result is that increase in the PV nominal efficiency will result in the...