Loading...
Search for: concentric-load
0.01 seconds

    Investigating the behavior of circular concrete filled PVC tube columns under concentric and eccentric load using FEM

    , Article Asian Journal of Civil Engineering ; Volume 22, Issue 4 , 2021 , Pages 589-603 ; 15630854 (ISSN) Alinejad, A ; Khaloo, A ; Hassanpour, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The purpose of this research is to investigate the response of concrete-filled composite tube column under concentric and eccentric loads. To evaluate the influence of PVC pipe on the behavior of concrete-filled composite tubes, concrete-filled PVC pipe (CFPT) were modeled by ABAQUS software. The results demonstrate that the presence of the PVC pipe makes the concrete column more ductile and have a significant effect on the stress–strain curve of the CFPT after the peak strength, in a way that the confinement increased by raising the thickness of PVC pipe, but the confinement effect of the PVC pipe decreased by the increment of the column diameter and compressive strength of the concrete... 

    Investigating the behavior of circular concrete filled PVC tube columns under concentric and eccentric load using FEM

    , Article Asian Journal of Civil Engineering ; Volume 22, Issue 4 , 2021 , Pages 589-603 ; 15630854 (ISSN) Alinejad, A ; Khaloo, A ; Hassanpour, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The purpose of this research is to investigate the response of concrete-filled composite tube column under concentric and eccentric loads. To evaluate the influence of PVC pipe on the behavior of concrete-filled composite tubes, concrete-filled PVC pipe (CFPT) were modeled by ABAQUS software. The results demonstrate that the presence of the PVC pipe makes the concrete column more ductile and have a significant effect on the stress–strain curve of the CFPT after the peak strength, in a way that the confinement increased by raising the thickness of PVC pipe, but the confinement effect of the PVC pipe decreased by the increment of the column diameter and compressive strength of the concrete... 

    Constitutive law of finite deformation elastoplasticity with proportional loadings

    , Article Journal of Pressure Vessel Technology, Transactions of the ASME ; Volume 135, Issue 6 , September , 2013 ; 00949930 (ISSN) Darijani, H ; Naghdabadi, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, decomposition of the total strain into elastic and plastic parts is investigated for extension of elastic-type constitutive models to finite deformation elastoplasticity. In order to model the elastic behavior, a Hookean-type constitutive equation based on the logarithmic strain is considered. Based on this constitutive equation and assuming the deformation theory of Hencky as well as the yield criteria of von Mises, the elastic-plastic behavior of materials at finite deformation is modeled in the case of the proportional loading. Moreover, this elastoplastic model is applied in order to determine the stress distribution in thick-walled cylindrical pressure vessels at finite... 

    Neuro-Skins: Dynamics, plasticity and effect of neuron type and cell size on their response

    , Article Neural Processing Letters ; 2018 , Pages 1-23 ; 13704621 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    We are introducing a new type of membrane, called neuro-skin or neuro-membrane. It is comprised of neurons embedded in a plastic membrane. The skin is smart and adaptive and is capable of providing desirable response to inputs intelligently. This way, the neuro-skin can be considered as a new type of neural network with adaptivity and learning capabilities. However, in this paper, only the response of neuro-skins to a dynamic input is studied. The membrane is modelled by nonlinear dynamic finite elements. Each finite element is considered as a cell of the neuro-skin which has a neuron. The neuron is the intelligent nucleus of the element. So, the finite elements are called finite... 

    Neuro-Skins: Dynamics, Plasticity and effect of neuron type and cell size on their response

    , Article Neural Processing Letters ; Volume 49, Issue 1 , 2019 , Pages 19-41 ; 13704621 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    We are introducing a new type of membrane, called neuro-skin or neuro-membrane. It is comprised of neurons embedded in a plastic membrane. The skin is smart and adaptive and is capable of providing desirable response to inputs intelligently. This way, the neuro-skin can be considered as a new type of neural network with adaptivity and learning capabilities. However, in this paper, only the response of neuro-skins to a dynamic input is studied. The membrane is modelled by nonlinear dynamic finite elements. Each finite element is considered as a cell of the neuro-skin which has a neuron. The neuron is the intelligent nucleus of the element. So, the finite elements are called finite... 

    Numerical evaluation of the ultimate load of concrete funicular shells of circular plan

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 174, Issue 1 , 2021 , Pages 5-11 ; 09650911 (ISSN) Javid, A ; Mofid, M ; Sharif University of Technology
    ICE Publishing  2021
    Abstract
    A special type of shell structure - a concrete shallow funicular shell of circular plan - is considered in this paper. Funicular shells carry their dead weight only by in-plane compression forces. Numerical analysis of funicular shells was performed using the non-linear finite-element method, considering both geometric and material non-linearities. A circular-plan concrete funicular shell unit was also constructed and its ultimate central concentrated load is determined. The ultimate load of the shell unit predicted by the numerical model was very close to the experimentally determined ultimate load, thus confirming the validity of the numerical model. The numerical results revealed the... 

    Deformation and stress analysis of the fullerene by super element

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 2 , 2011 , Pages 895-900 ; 9780791854884 (ISBN) Sarvi, M. N ; Ahmadian, M. T ; Barari, A ; ASME ; Sharif University of Technology
    Abstract
    Accurate prediction of static and dynamic response of nano structures is one of the important interests of scientists in the last decade. Nano bearing as an important part of nano machines has been extensively implemented in recognizing and disassembling cancerous cells and building molecular support structures for strengthening bones. For this reason, Molecular Dynamic Method and some experimental methods are implemented in this area. As nano ball bearing is one of the most important components of nano machines, a large number of studies are concentrated to analyze it statically and dynamically. In this paper, a Fullerene is simulated by a spherical super element whose stress, deformation... 

    Deformation, stress and natural frequency analysis of the fullerene by finite super element method

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 7 , August , 2011 , Pages 153-158 ; 9780791854846 (ISBN) Sarvi, M. N ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    Accurate prediction of static and dynamic response of nano structures is one of the important interests of scientists in the last decade. Nano bearing as an important part of nano machines has been extensively implemented in recognizing and disassembling cancerous cells and building molecular support structures for strengthening bones. For this reason, Molecular Dynamic Method and some experimental methods are implemented in this area. As nano ball bearing is one of the most important components of nano machines, a large number of studies are concentrated to analyze it statically and dynamically. In this paper, a Fullerene is simulated by a spherical super element whose stress, deformation... 

    Calculation of the additional constants for fcc materials in second strain gradient elasticity: Behavior of a nano-size bernoulli-euler beam with surface effects

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 79, Issue 2 , 2012 ; 00218936 (ISSN) Shodja, H. M ; Ahmadpoor, F ; Tehranchi, A ; Sharif University of Technology
    2012
    Abstract
    In addition to enhancement of the results near the point of application of a concentrated load in the vicinity of nano-size defects, capturing surface effects in small structures, in the framework of second strain gradient elasticity is of particular interest. In this framework, sixteen additional material constants are revealed, incorporating the role of atomic structures of the elastic solid. In this work, the analytical formulations of these constants corresponding to fee metals are given in terms of the parameters of Sutton-Chen interatomic potential function. The constants for ten fcc metals are computed and tabulized. Moreover, the exact closed-form solution of the bending of a...