Loading...
Search for: concrete-slabs
0.005 seconds

    Numerical Analysis of External Post-Tensioned Concrete Slabs

    , M.Sc. Thesis Sharif University of Technology Sadiri Abolhassani, Ramin (Author) ; Eskandari , Morteza (Supervisor) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    In this research a new type of external post-tensioned concrete slab is proposed. In this system, the tension force of cables is used as upward force acting at the bottom face of slab. To achieve this behavior, two short concrete columns mounted at the bottom face of slab and act as the middle supports for the cables. Based on the cable force and its angle, an upward force is applied to the slab at the location of columns. In fact, a truss structure comprising of the concrete slab as compression cords, cables as tension cords, and columns as ties. By virtue of Kirchhoff’s plate theory, an analytical treatment of the slab under gravity loads is addressed. For analytical study, it is assumed... 

    Analysis of Slabs Stiffened by Cables and Pedestals

    , M.Sc. Thesis Sharif University of Technology Mokhberi, Arsalan (Author) ; Eskandari, Morteza (Supervisor)
    Abstract
    In this study, a new concrete slab stiffened by concrete pedestals and steel cables is introduced. The slab system is studied by employing both analytical and numerical methods. The steel cables are connected to the edges of slab and the concrete pedestals mounted at the bottom face of slab act as the middle supports of cables. The tension force in the cable and its inclination results in upward forces acting at the bottom face of slab. With the aims of classical theory of thin plates and the superposition technique, the problem of a simply supported rectangular slab stiffened by cables is studied analytically. The obtained results are verified by a numerical modelling implemented in SAP2000... 

    Interaction Effects of Gravity and Lateral Loads in Reinforced Concrete Slab

    , M.Sc. Thesis Sharif University of Technology Hosseinalizadeh, Amir (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Reinforced concrete slabs carry both vertical gravity loads and in plane forces due to seismic loads. In this study interaction of bending and in plane forces will be considered. Lee et al. in 2007 studied the floor diaphragm behavior. They considered combination of both in plane and out of plane loadings. In the most previous studies, the diaphragm behavior of a floor slab was represented by its behavior under in-plane forces only. With this assumption, analysis of the floor diaphragm was simplified to the two dimensional plane stress problem. For low-rise buildings, the lateral stiffness of the structure is usually higher than high-rise buildings.Tena et al. in 2014 assessed ment the... 

    Mechanical properties of precast reinforced concrete slab tracks on non-ballasted foundations

    , Article Scientia Iranica ; Volume 19, Issue 1 , February , 2012 , Pages 20-26 ; 10263098 (ISSN) Madhkhan, M ; Entezam, M ; Torki, M. E ; Sharif University of Technology
    Abstract
    This article deals with the mechanical properties of steel-reinforced concrete precast slab tracks on non-ballasted elasto-plastic foundations. To work out the spanning behavior of slab tracks, a FEM analysis was executed for discrete and continuous systems. At first, full-size slabs without foundation including solid and hollow-core specimens (with 30% weight reduction) were tested under centric static (monotonic) line loads, and loaddeflection curves were extracted. Then, FEM results for zero foundation stiffness were verified with those of experiments, which were in good agreement. Original results include the effects of several parameters on the cracking load, ultimate load, and energy... 

    Dynamic performance enhancement of RC slabs by steel fibers vs. externally bonded GFRP sheets under impact loading

    , Article Engineering Structures ; Volume 213 , 2020 Soltani, H ; Khaloo, A ; Sadraie, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Recently, to improve the dynamic behavior of Reinforced Concrete (RC) slabs under impact load, the methods of externally bonding Glass Fiber Reinforced Polymer (GFRP) sheets to slab and internally reinforcing concrete by steel fibers have been proposed. Nevertheless, it is required to investigate the comparison between these two methods on response of RC slabs under impact loads. In this study, the influence of volume fraction of steel fibers, the number of GFRP sheet layers (one or two) and the arrangement of GFRP sheets (covering the whole or parts of surface), are examined. Performance of fourteen 1000 × 1000 × 75 mm concrete slabs including one plain slab, one steel RC slab, three steel... 

    Behavior of channel shear connectors, Part II: Analytical study

    , Article Journal of Constructional Steel Research ; Volume 64, Issue 12 , December , 2008 , Pages 1341-1348 ; 0143974X (ISSN) Maleki, S ; Bagheri, S ; Sharif University of Technology
    2008
    Abstract
    In this second part of the two companion papers an effective numerical model is proposed using finite element method to simulate the push-out test of channel shear connectors. The focus is on the shear capacity of channel shear connectors embedded in a solid reinforced concrete slab under monotonic loading. The model has been validated against test results presented in Part (I) and compared with data given in North American design codes. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength, channel dimensions and the orientation of the channel. The results show that the concrete strength, web and flange thicknesses of the channel and... 

    Analytical Problems of Prestressd Post-tensione Concrete Slabs

    , M.Sc. Thesis Sharif University of Technology Javanmardi, Mohammad Reza (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Recently in civil engineering prestressed concrete slab applications is increasing, and typically results in overall economy and provides satisfactory structural performance. In The present work, two-way prestressed concrete slabs have been considered and during designing process with the ACI-2005 code and due to economic plan, prestressed slabs were studied in transfer, service and final conditions. ACI code insists that two-way prestressed slabs shall be classified as class U (without cracking) that means section must be untracked in all conditions (code reference 18.3.3). In addition, two-way prestressed slabs must be prestressed in both directions for 100% of load, and this means that... 

    Investigation of Dynamic Behavior of Concrete Slabs Reinforced with GFRP Bars and Prestressed Concrete Slabs under Impact Loading

    , Ph.D. Dissertation Sharif University of Technology Sadraie, Hamid (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Prestressed and reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although, use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. In addition, studies on steel reinforced concrete slabs have been found in literature, but investigation of prestressed slabs and GFRP reinforced concrete slabs under impact load is limited. This study investigated the effect of rebar’s material, amount and arrangement of reinforcements, concrete strength and slab... 

    Behavior Evaluation of Pre-stressed Concrete Slabs Strengthened by FRP laminates under Impact Loads

    , M.Sc. Thesis Sharif University of Technology Jarrahbashi, Amir Hossein (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The investigation of non-prestressed concrete components subjected to impact loadings has been reported in the literature. However, the knowledge on the impact-resistant capacity of pre-stressed concrete components is very limited. In this study, behavior of pre-stressed concrete slabs strengthened by FRP sheets is investigated. The behavior of strengthened pre-stressed concrete slabs under impact load is analyzed using finite elements method. The effects of FRP strengthening of pre-stressed concrete slabs to resist impact loads have been studied using ANSYS software. Pre-stressed concrete slabs have been modeled without/with different FRP strengthening measures. Pre-stressed concrete slab... 

    Performance of Unbonded Post-Tensioned Concrete Slab Subjected to Temperature Variations

    , M.Sc. Thesis Sharif University of Technology Erfani, Ali (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Tests have shown that concrete post-tensioned slab under heat condition suffer a significant reduction in stiffness and strength. Design and implementation of post-tensioned concrete slabs with large spans of industrial structures exposed to extreme variation in temperature can be possible with detailed research on its behavior under heating condition. In this study numerical modelling of PT concrete slabs with unbonded tendons under heating condition was created based on available test results in the literature. A parametric study has been carried out and the results are presented for concrete coefficient thermal expansion, thermal contact conductance between the concrete and the cables,... 

    Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading

    , Article Engineering Structures ; Volume 191 , 2019 , Pages 62-81 ; 01410296 (ISSN) Sadraie, H ; Khaloo, A ; Soltani, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. This study investigated the effect of rebar's material, amount and arrangement of reinforcements, concrete strength and slab thickness on dynamic behavior of reinforced concrete slabs using both laboratory experiments and numerical simulations. Performance of fifteen 1000 × 1000 mm concrete slabs, including two 75 mm thick plain slabs,... 

    Experimental Investigation on the Behavior of RC Arches Strengthened by GFRP and CFRP Composites

    , M.Sc. Thesis Sharif University of Technology Moradi, Hossein (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The rehabilitation of old structures holds a lot of importance, as many structures with a life span of over 30 years are prone to severe damage and even collapse. To overcome this problem, the use of FRP sheets to strengthen structures is suggested. RC-arches have been used in many structures such as bridges and require specific consideration in terms of strengthening. So far, the influence of the number of FRP layers and location, the height of arch and percentage of reinforcement on strengthened arch behavior have not been investigated. In this research, reinforced concrete arch members strengthened with GFRP and CFRP were investigated. A total of 28 Specimens, including four... 

    Mechanical properties of steel fiber-reinforced concrete slab tracks on non-ballasted foundations

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1626-1636 ; 10263098 (ISSN) Madhkhan, M ; Entezam, A ; Torki, M. E ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Mechanical properties of slab tracks on a foundation with nonlinear stiffness are accounted for. At first, the cracking stages were inspected in FEM models, and it was learned that slab tracks have one-way exural behavior. Secondly, experimental full-scale models were made, and the accuracy of analyses was verified by comparing the FEM loadde ection curves with those of previous studies and validating the cracking and ultimate loads with those obtained from experiments. Finally, the effects of several parameters on the cracking and ultimate loads and the energy absorption of steel fiber-reinforced slab tracks were investigated by examining the real behavior of slab tracks on elastic... 

    Numerical analysis of tilted angle shear connectors in steel-concrete composite systems

    , Article Steel and Composite Structures ; Volume 23, Issue 1 , 2017 , Pages 67-85 ; 12299367 (ISSN) Khorramian, K ; Maleki, S ; Shariati, M ; Jalali, A ; Tahir, M. M ; Sharif University of Technology
    Techno Press  2017
    Abstract
    This study investigates numerically the behavior of tilted angle shear connectors embedded in solid concrete slabs. Two different tilted angle connectors were used, titled angle with 112.5 and 135 degrees between the angle leg and steel beam flange. A nonlinear finite element model was developed to simulate and validate the experimental push-out tests. Parametric studies were performed to investigate the variations in concrete strength and connector's dimensions. The results indicate that the ultimate strength of a tilted angle shear connector is directly related to the square root of the concrete compressive strength. The effects of variations in the geometry of tilted angle connectors on... 

    Numerical and experimental investigation on a BRB confined with partially carbon fiber reinforced polymer (CFRP)

    , Article Engineering Structures ; Volume 223 , 2020 Bashiri, M ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Buckling-restrained braces (BRBs) have been spread widely, especially in high seismic hazard zones due to their excellent energy absorption capacity. BRBs are composed of a main load-carrying steel core restrained with other elements mostly made of concrete and steel casing to preserve it from buckling. Although BRBs provide excellent cyclic behavior, a problem is with their heaviness, which leads to difficulties such as installation and transportation. This study presents a numerical and experimental investigation on a BRB with a new proposed restraining system composed of concrete panels confined with partially carbon fiber reinforced polymer (CFRP) strips to reduce the weight of the... 

    Computational predictions for estimating the maximum deflection of reinforced concrete panels subjected to the blast load

    , Article International Journal of Impact Engineering ; Volume 139 , 2020 Shishegaran, A ; Khalili, M. R ; Karami, B ; Rabczuk, T ; Shishegaran, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We investigate the resistance of reinforced concrete panels (RCPs) due to explosive loading using nonlinear finite element analysis and surrogate models. Therefore, gene expression programming model (GEP), multiple linear regression (MLR), multiple Ln equation regression (MLnER), and their combination are used to predict the maximum deflection of RCPs. The maximum positive and negative errors, mean of absolute percentage error (MAPE), and statistical parameters such as the coefficient of determination, root mean square error (RMSE). Normalized square error (NMSE), and fractional bias are utilized to evaluate and compare the performance of the models. We also present a novel statistical table... 

    Experimental and numerical investigation of minimum required fiber content in bending characteristics of 100 MPa UHPC-formulated concrete

    , Article Case Studies in Construction Materials ; Volume 16 , 2022 ; 22145095 (ISSN) Kamjou, A. S ; Khaloo, A ; Hassanpour, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The present study investigates the lowest possible amount of steel and polypropylene fibers in improving the compressive and flexural strength, stiffness, and energy capacity of high strength 100 MPa concrete with a mix design similar to that of Ultra-High Performance Concrete (UHPC). Twenty-eight 100 × 200 mm cylindrical specimens with 0%, 0.2%, 0.4%, and 0.6% volumetric percentage of short steel fibers and polypropylene fibers were fabricated, which were at the lowest predicted percentages with respect to fiber content recommended in the literature. To assess the flexural performance of fiber-reinforced concrete panels, specimens with dimensions of 200 × 600 × 20 mm were made with the same... 

    Three-dimensional nonlinear seismic analysis of concrete faced rockfill dams subjected to scattered P, SV, and SH waves considering the dam-foundation interaction effects

    , Article Soil Dynamics and Earthquake Engineering ; Volume 31, Issue 5-6 , 2011 , Pages 792-804 ; 02677261 (ISSN) Seiphoori, A ; Mohsen Haeri, S ; Karimi, M ; Sharif University of Technology
    2011
    Abstract
    In this study, the nonlinear seismic analysis of a typical three-dimensional concrete faced rockfill dam is reported. Three components of the Loma Prieta (Gilroy 1 station) earthquake acceleration time history are used as input excitation. The dam under study is considered as if it were located in a prismatic canyon with a trapezoidal cross-section. A nonlinear model for the rockfill material is used, and contact elements with Coulomb friction law are utilized at the slab-rockfill interface. Vertical joints in the face slab are also considered in the finite element model. A substructure method, in which the unbounded soil is modelled by the scaled boundary finite element method (SBFEM), is... 

    Experimental and analytical model analysis of Babolsar's steel arch bridge

    , Article 3rd International Conference on Bridge Maintenance, Safety and Management - Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost, Porto, 16 July 2006 through 19 July 2006 ; 2006 , Pages 235-237 ; 0415403154 (ISBN); 9780415403153 (ISBN) Beygi, M. H. A ; Kazemi, M. T ; Lark, B ; Tabrizian, Z ; Sharif University of Technology
    Taylor and Francis/ Balkema  2006
    Abstract
    The paper presents the experimental and analytical model analysis of a steel-girder arch bridge. The field test is carried out by ambient vibration testing under traffic excitations. Both the peak picking method in the frequency domain and the stochastic subspace identification method in the time domain are used for the output-only model identification. A good agreement in identified frequencies has been found between the two methods. It is further demonstrated that the stochastic subspace method provides better mode shapes. The three-dimensional finite element models are constructed and an analytical model analysis is then performed to generate natural frequencies and mode shapes in the...