Loading...
Search for: conductive-polymer-composites
0.006 seconds

    Compressive modulus and deformation mechanisms of 3DG foams: Experimental investigation and multiscale modeling

    , Article Nanotechnology ; Volume 32, Issue 48 , 2021 ; 09574484 (ISSN) Mahdavi, S. M ; Adibnazari, S ; Del Monte, F ; Gutiérrez, M. C ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Due to the wide applications of three-dimensional graphene (3DG) foam in bio-sensors, stretchable electronics, and conductive polymer composites, predicting its mechanical behavior is of paramount importance. In this paper, a novel multiscale finite element model is proposed to predict the compressive modulus of 3DG foams with various densities. It considers the effects of pore size and structure and the thickness of graphene walls on 3DG foams' overall behavior. According to the scanning electron microscope images, a unit cell is selected in the microscale step to represent the incidental arrangement of graphene sheets in 3DG foams. After derivation of equivalent elastic constants of the... 

    Thermal synergistic effect in hybrid filler epoxy composites consisting of graphene nanoplatelets and SiC particles

    , Article Thermal Science and Engineering Progress ; Volume 25 , 2021 ; 24519049 (ISSN) Nouri Borujerdi, A ; Kazemi Ranjbar, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The use of hybrid filler is a promising strategy for development of thermally conductive polymer composites. This paper reported the measurement of thermal conductivity of the epoxy composite filled with a hybrid filler of graphene nanoplatelet (GNP) and silicon carbide (SiC) microparticles. For this hybrid filler, the effect of the average size of SiC on composite thermal conductivity was examined. The results showed that the thermal synergistic effect was highly affected by the average size of the SiC. By using a hybrid filler of 11% vol. GNP and 9% vol. 1 µm-size SiC micro-particles thermal conductivity has reached 3.44 W m−1 K−1. This value is 42% higher than the thermal conductivity of... 

    In pursuit of a replacement for conventional high-density polyethylene tubes in ground source heat pumps from their composites – a comparative study

    , Article Geothermics ; Volume 87 , September , 2020 Narei, H ; Fatehifar, M ; Ghasempour, R ; Noorollahi, Y ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Ground-source heat pumps, as the most environmentally friendly and energy-efficient air conditioning technology, suffer from a great required length of ground heat exchanger, partly arising from the low thermal conductivity of high-density polyethylene tubes commonly used in ground heat exchangers. In an attempt to find a replacement with an acceptable thermal conductivity for high-density polyethylene tubes, in this study, first, a comprehensive comparative study on fillers commonly used in thermally conductive polymer composites and resulting high-density polyethylene composites was conducted. Then, based on the advantages and disadvantages presented, an appropriate composite was selected...