Loading...
Search for: conjugate-gradient-methods
0.007 seconds

    Two modified hybrid conjugate gradient methods based on a hybrid secant equation

    , Article Mathematical Modelling and Analysis ; Volume 18, Issue 1 , 2013 , Pages 32-52 ; 13926292 (ISSN) Babaie Kafaki, S ; Mahdavi Amiri, N ; Sharif University of Technology
    2013
    Abstract
    Taking advantage of the attractive features of Hestenes-Stiefel and Dai-Yuan conjugate gradient methods, we suggest two globally convergent hybridizations of these methods following Andrei's approach of hybridizing the conjugate gradient parameters convexly and Powell's approach of nonnegative restriction of the conjugate gradient parameters. In our methods, the hybridization parameter is obtained based on a recently proposed hybrid secant equation. Numerical results demonstrating the efficiency of the proposed methods are reported  

    A modified two-point stepsize gradient algorithm for unconstrained minimization

    , Article Optimization Methods and Software ; Volume 28, Issue 5 , 2013 , Pages 1040-1050 ; 10556788 (ISSN) Babaie Kafaki, S ; Fatemi, M ; Sharif University of Technology
    2013
    Abstract
    Based on a modified secant equation proposed by Li and Fukushima, we derive a stepsize for the Barzilai-Borwein gradient method. Then, using the newly proposed stepsize and another effective stepsize proposed by Dai et al. in an adaptive scheme that is based on the objective function convexity, we suggest a modified two-point stepsize gradient algorithm. We also show that the limit point of the sequence generated by our algorithm is first-order critical. Finally, our numerical comparisons done on a set of unconstrained optimization test problems from the CUTEr collection are presented. At first, we compare the performance of our algorithm with two other two-point stepsize gradient algorithms... 

    Two new conjugate gradient methods based on modified secant equations

    , Article Journal of Computational and Applied Mathematics ; Volume 234, Issue 5 , 2010 , Pages 1374-1386 ; 03770427 (ISSN) Babaie Kafaki, S ; Ghanbari, R ; Mahdavi Amiri, N ; Sharif University of Technology
    2010
    Abstract
    Following the approach proposed by Dai and Liao, we introduce two nonlinear conjugate gradient methods for unconstrained optimization problems. One of our proposed methods is based on a modified version of the secant equation proposed by Zhang, Deng and Chen, and Zhang and Xu, and the other is based on the modified BFGS update proposed by Yuan. An interesting feature of our methods is their account of both the gradient and function values. Under proper conditions, we show that one of the proposed methods is globally convergent for general functions and that the other is globally convergent for uniformly convex functions. To enhance the performance of the line search procedure, we also... 

    A nonmonotone PRP conjugate gradient method for solving square and under-determined systems of equations

    , Article Computers and Mathematics with Applications ; Volume 73, Issue 2 , 2017 , Pages 339-354 ; 08981221 (ISSN) Ataee Tarzanagh, D ; Nazari, P ; Peyghami, M. R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this paper, we propose a new derivative-free preconditioned conjugate gradient method in order for solving large-scale square and under-determined nonlinear systems of equations. The proposed method is also equipped with a relaxed nonmonotone line search technique. Under some suitable assumptions, the global convergence property is established. Numerical results on some square and under-determined test systems show the efficiency and effectiveness of the new method in practice. An application of the new method for solving nonlinear integro-differential equations is also provided. © 2016 Elsevier Ltd  

    Accelerated Hybrid Conjugate Gradient Algorithm with Modified Secant Condition

    , M.Sc. Thesis Sharif University of Technology Soleimani Kourandeh, Aria (Author) ; Mahdavi Amiri, Nezamoddin (Supervisor)
    Abstract
    Conjugate gradient methods are useful for large scale nonlinear optimization problem, because they avoid the storage of any matrices. In this thesis, we have investigated an accelerated hybrid conjugate gradient algorithm, recently proposed in the literature. The combining parameter is calculated so that the corresponding direction to the conjugate gradient algorithm, while satisfies the modified secant condition, is a Newton direction. It is shown that for uniformly convex functions and for general nonlinear functions the algorithm with strong Wolfe line search is globally convergent. The algorithm uses an accelerated approach for the reduction of the objective function values by modifying... 

    Implementation of New Hybrid Conjugate Gradient Algorithms
    Based on Modified BFGS Updates

    , M.Sc. Thesis Sharif University of Technology Moshtagh, Mehrdad (Author) ; Mahdavi-Amiri, Nezam (Supervisor)
    Abstract
    We describe two modified secant equations proposed by Yuan, Li and Fukushima. First, we study the approach proposed by Andrei. Then, we explain two hybrid conjugate gradient methods for unconstrained optimization problems. The methods are hybridizations of Hestenes-Stiefel and Dai-Yuan conjugate gradient methods. It is shown that one of the algorithms is globally convergent for uniformly convex functions and the other is globally convergent for general functions. Two approaches for computing the initial value of the steplength proposed by Babaie, Fatemi, and Mahdavi-Amiri and Andrei are used for accelerating the performance of the line search. We implement the algorithms and compare the... 

    Solving of Nonconvex Optimization Problem Using Trust-Region Newton-Conjugate Gradient Method with Strong Second-Order Complexity Guarantees

    , M.Sc. Thesis Sharif University of Technology Javidpanah, Fatemeh (Author) ; Mahdavi Amiri, Nezamoddin (Supervisor)
    Abstract
    Worst-case complexity guarantees for non-convex optimization algorithms is a topic that have received increasing attention. Here , we review trust-region Newton methods recently proposed in the literature . After a slight modification of the main model , two methods are proposed : one of them is based on the exact solution of the sub-problem , and the other is based on the inexact solution of the sub-problem , such as ``trust-region Newton-conjugate gradient " method with the complexity bounds corresponding to the best known bounds for this class of algorithms . We implement the proposed algorithms and test the programs in the Python software environment  

    Structured multiblock body-fitted grids solution of transient inverse heat conduction problems in an arbitrary geometry

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 54, Issue 3 , July , 2008 , Pages 260-290 ; 10407790 (ISSN) Azimi, A ; Kazemzadeh Hannani, S ; Farhanieh, B ; Sharif University of Technology
    2008
    Abstract
    The aim of this study is to develop iterative regularization algorithms based on parameter and function estimation techniques to solve two-dimensional/axisymmetric transient inverse heat conduction problems in curvilinear coordinate system. The multiblock method is used for geometric decomposition of the physical domain into regions with patched-overlapped interface grids. The central finite-difference version of the alternating-direction implicit technique together with structured body-fitted grids is implemented for numerical solution of the direct problem and other partial differential equations derived by inverse analysis. The approach of estimating unknown parameters and functions is... 

    Graph-Based Preconditioners for Network Flow Problems

    , M.Sc. Thesis Sharif University of Technology Yousefi Lalimi, Fateme (Author) ; Mahdavi Amiri, Nezamoddin (Supervisor)
    Abstract
    Considering the special importance of network flow problems in human life, as well as the complexity of solving these problems in very large scales, there are numerous methods to solve them and the interior point methods are the most important approaches among them. In a number of methods, a preconditioned conjugate gradient solver has been applied for the solution of the Karush-Kuhn-Tucker (KKT) system, in each interior point iteration; therefore, the selection of an appropriate preconditioner is a special issue. In spite of presenting different preconditioners in recent years, discussion and implementation of a particular class of triangulated graph-based preconditioners is our main... 

    Online undersampled dynamic MRI reconstruction using mutual information

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014 ; 17 February , 2014 , Pages 241-245 ; ISBN: 9781479974177 Farzi, M ; Ghaffari, A ; Fatemizadeh, E ; Sharif University of Technology
    Abstract
    We propose an algorithm based on mutual information to address the problem of online reconstruction of dynamic MRI from partial k-space measurements. Most of previous compressed sensing (CS) based methods successfully leverage sparsity constraint for offline reconstruction of MR images, yet they are not used in online applications due to their complexities. In this paper, we formulate the reconstruction as a constraint optimization problem and try to maximize the mutual information between the current and the previous time frames. Conjugate gradient method is used to solve the optimization problem. Using Cartesian mask to undersample k-space measurements, the proposed method reduces... 

    An inverse problem method for gas temperature estimation in partially filled rotating cylinders

    , Article Scientia Iranica ; Volume 15, Issue 5 , 2008 , Pages 584-595 ; 10263098 (ISSN) Heydari, M. M ; Farhanieh, B ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    The objective of this article is to study gas temperature estimation in a partially filled rotating cylinder. From the measured temperatures on the shell, an inverse analysis is presented for estimating the gas temperature in an arbitrary cross-section of the aforementioned system. A finite-volume method is employed to solve the direct problem. By minimizing the objective function, a hybrid effective algorithm, which contains a local optimization algorithm, is adopted to estimate the unknown parameter. The measured data are simulated by adding random errors to the exact solution. The effects of measurement errors on the accuracy of the inverse analysis are investigated. Two optimization... 

    Comparative study of application of different supervised learning methods in forecasting future states of NPPs operating parameters

    , Article Annals of Nuclear Energy ; Volume 132 , 2019 , Pages 87-99 ; 03064549 (ISSN) Moshkbar Bakhshayesh, K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this paper, some important operating parameters of nuclear power plants (NPPs) transients are forecasted using different supervised learning methods including feed-forward back propagation (FFBP) neural networks such as cascade feed-forward neural network (CFFNN), statistical methods such as support vector regression (SVR), and localized networks such as radial basis network (RBN). Different learning algorithms, including gradient descent (GD), gradient descent with momentum (GDM), scaled conjugate gradient (SCG), Levenberg-Marquardt (LM), and Bayesian regularization (BR) are used in CFFNN method. SVR method is used with different kernel functions including Gaussian, polynomial, and... 

    Modeling relative permeability of gas condensate reservoirs: Advanced computational frameworks

    , Article Journal of Petroleum Science and Engineering ; Volume 189 , June , 2020 Mahdaviara, M ; Menad, N. A ; Ghazanfari, M. H ; Hemmati Sarapardeh, A ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    In the last years, an appreciable effort has been directed toward developing empirical models to link the relative permeability of gas condensate reservoirs to the interfacial tension and velocity as well as saturation. However, these models suffer from non-universality and uncertainties in setting the tuning parameters. In order to alleviate the aforesaid infirmities in this study, comprehensive modeling was carried out by employing numerous smart computer-aided algorithms including Support Vector Regression (SVR), Least Square Support Vector Machine (LSSVM), Extreme Learning Machine (ELM), Multilayer Perceptron (MLP), Group Method of Data Handling (GMDH), and Gene Expression Programming...