Loading...
Search for: conjugate-heat-transfer
0.005 seconds

    A coupled adjoint formulation for non-cooled and internally cooled turbine blade optimization

    , Article Applied Thermal Engineering ; Volume 105 , 2016 , Pages 327-335 ; 13594311 (ISSN) Zeinalpour, M ; Mazaheri, K ; Chaharlang Kiani, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Most researches on the application of the adjoint method in turbine blade design are concentrated on the aerodynamic shape optimization without considering the heat transfer to/from the blade material. In this study, the adjoint method is extended to the conjugate heat transfer problems in which the viscous flow field is coupled to heat transfer in the solid region. Introducing a new adjoint variable in the solid domain, a heat adjoint equation is derived which is coupled with the energy adjoint equation in the fluid zone at the fluid/solid interface. The detailed mathematical description associated with the derivation of the heat adjoint equation with corresponding boundary conditions are... 

    Piloted ignition of solid fuels in turbulent back-step flows

    , Article Aerospace Science and Technology ; Volume 18, Issue 1 , 2012 , Pages 8-14 ; 12709638 (ISSN) Tahsini, A. M ; Sharif University of Technology
    2012
    Abstract
    Piloted ignition of solid fuels in dump combustor geometry subject to an igniter hot jet plume is numerically investigated. The objective of this work is to gain insight into the fuel ignition and subsequent flame spreading in this turbulent flow configuration. Conjugate heat transfer between gas and solid phases is considered to study the solid fuel heating and evaporation process; Solid phase energy equation is simultaneously solved coupled with flow governing equations. Finite rate one step second order chemistry is used in simulations. The gas phase equations along with the Spalart-Allmaras turbulence model are solved with a finite volume approach in which the AUSM + scheme is used to... 

    Improvement of heat-transfer correlations for supercritical methane coolant in rectangular channel

    , Article Applied Thermal Engineering ; Volume 147 , 2019 , Pages 216-230 ; 13594311 (ISSN) Shokri, M ; Ebrahimi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this article, the conjugate heat transfer of the methane coolant inside a rectangular channel is studied and the related Nusselt correlations are improved. The compressible methane flow enters the cooling channel at supercritical pressure and subcritical temperature. The coolant flow absorbs heat from the heated walls and exits the channel with a supercritical temperature. An in-house solver is developed employing Semi-Implicit Method for Pressure-Linked Equations-Consistent (SIMPLEC) algorithm accompanied by the appropriate thermodynamic and transport property relations for the supercritical conditions of the methane coolant. The solver is validated with the experimental data found in... 

    Three-dimensional Aerothermal Shape Optimization of Turbine Blade, Using Gradient Adjoint-based Methods

    , Ph.D. Dissertation Sharif University of Technology Zeinalpour, Mehdi (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    The most important challenge and the most time consuming part of the gradient based optimization algorithms in the aerodynamic shape optimization problems is the evaluation of the sensitivity of the objective function with respect to the design variables. The adjoint method which has been the subject of many research in the recent three decades, is capable of computing the complete gradient information needed for optimization by solving the governing flow equations and their corresponding adjoint equations only once, regardless of the number of design parameters. In this study, the continues adjoint equations for compressible inviscid and viscous flows are derived and the formulation of... 

    Development of a Suitable Computational Conjugate Heat Transfer Algorithm to Analyze Turbine Blade Internal Cooling

    , M.Sc. Thesis Sharif University of Technology Sajadi, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Nowadays, the study of flow and heat transfer in turbine engines has become critical due to their increasing use and importance in various engineering industries. The critical issue of blade burning in the first row of turbine’s blades illuminates the critical roles of numerical and experimental activities in reducing these undesirable effects. Since blade cooling is directly related to the secondary air system, one important issue in blade burning research is to utilize the conjugate heat transfer approach. As Known, an increase of about 1% in the mass flow of air entering into the secondary air system would cause an increase of about 0.5% in the engine specific fuel consumption (SFC),... 

    Turbine blade cooling passages optimization using reduced conjugate heat transfer methodology

    , Article Applied Thermal Engineering ; Volume 103 , 2016 , Pages 1228-1236 ; 13594311 (ISSN) Mazaheri, K ; Zeinalpour, M ; Bokaei, H. R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Here we have optimized shape and location of cooling passages of a C3X turbine blade using a multi-objective strategy. The objective functions is selected to be the maximum temperature gradient and the maximum temperature through the three dimensional blade. Shape of cooling channels is modeled using a new method based on the Bezier curves and using forty design variables. The optimized channel shapes are found to be smooth and without corners. To reduce the computational time, parallel processing and the reduced conjugate heat transfer methodology RCHT is used. Using RCHT, the heat transfer between channels and blade are coupled, while the experimental data is used for heat transfer... 

    Investigation of obstacle effect to improve conjugate heat transfer in backward facing step channel using fast simulation of incompressible flow

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; 2017 , Pages 1-16 ; 09477411 (ISSN) Nouri Borujerdi, A ; Moazezi, A ; Sharif University of Technology
    Abstract
    The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In... 

    Investigation of obstacle effect to improve conjugate heat transfer in backward facing step channel using fast simulation of incompressible flow

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 54, Issue 1 , 2018 , Pages 135-150 ; 09477411 (ISSN) Nouri Borujerdi, A ; Moazezi, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In... 

    Internal cooling sensitivity analysis to improve the thermal performance of gas turbine blade using a developed robust conjugate heat transfer method

    , Article International Journal of Engine Research ; 2022 ; 14680874 (ISSN) Darbandi, M ; Jalali, R ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    The heat transfer simulations of turbine blades with internal cooling are faced with so many uncertainties, of which some originate from the secondary air system, including the inlet hot gas temperature and pressure and the cooling side boundary conditions, and the blade material. The main objective of this work is to carry out a suitable sensitivity analysis on a specific novel turbine vane to improve the thermal performance of its internal cooling system and to quantify how the uncertainties on the designed/calculated values can desirably/undesirably affect the maximum blade surface temperature, which can consequently affect the gas turbine engine efficiency. Furthermore, the sensitivity...