Loading...
Search for: contact-angle-hysteresis
0.007 seconds

    Condensation enhancement on hydrophobic surfaces using electrophoretic method and hybrid paint coating

    , Article Heat Transfer Engineering ; 26 August , 2020 Najafpour, S ; Moosavi, A ; Najafkhani, H ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Condensation heat transfer on stainless steel tube utilizing superhydrophobic coatings was investigated. The electrophoretic deposition and spraying methods were employed to coat the tubes’ outer surface. The mixture that was synthesized for spray coating was a hybrid paint. It incorporated polyurethane matrix and a colloidal suspension containing organic nanoparticles. The hybrid paint had a proper adhesion to the substrate which caused more durability compared to the electrophoretic coating. The agglomeration of nanoparticles in the hybrid paint caused the formation of particles with larger size compared to the particles in the electrophoretic coating. Consequently, contact angle... 

    Condensation enhancement on hydrophobic surfaces using electrophoretic method and hybrid paint coating

    , Article Heat Transfer Engineering ; Volume 42, Issue 18 , 2021 , Pages 1557-1572 ; 01457632 (ISSN) Najafpour, S ; Moosavi, A ; Najafkhani, H ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Condensation heat transfer on stainless steel tube utilizing superhydrophobic coatings was investigated. The electrophoretic deposition and spraying methods were employed to coat the tubes’ outer surface. The mixture that was synthesized for spray coating was a hybrid paint. It incorporated polyurethane matrix and a colloidal suspension containing organic nanoparticles. The hybrid paint had a proper adhesion to the substrate which caused more durability compared to the electrophoretic coating. The agglomeration of nanoparticles in the hybrid paint caused the formation of particles with larger size compared to the particles in the electrophoretic coating. Consequently, contact angle... 

    Fog harvesting: combination and comparison of different methods to maximize the collection efficiency

    , Article SN Applied Sciences ; Volume 3, Issue 4 , 2021 ; 25233971 (ISSN) Sharifvaghefi, S ; Kazerooni, H ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    Fog harvesting is an unconventional source of water that can be used in some regions with water scarcity to overcome water shortages. The most commonly used collectors are meshes which have intrinsic limitations, the most important of which are clogging and aerodynamic deviation of droplets around the wires. Here, three techniques are compared and combined to overcome these limitations, i.e., replacing the mesh with an array of vertical wires, addition of a hydrophobic layer to the wires, and forcing the ionized droplets to move toward the wires by applying an electric field. The combination of these techniques was found to result in higher fog harvesting efficiency compared to each... 

    Toward a hydrocarbon-based chemical for wettability alteration of reservoir rocks to gas wetting condition: implications to gas condensate reservoirs

    , Article Journal of Molecular Liquids ; Volume 248 , 2017 , Pages 100-111 ; 01677322 (ISSN) Erfani Gahrooei, H. R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Recently, wettability alteration has been much attended by researchers for studying well productivity improvement in gas condensate reservoirs. Previous studies in this area only utilized water/alcohol based chemicals for this purpose. While, hydrocarbon nature of the blocked condensate in retrograde gas reservoirs, may motivate application of hydrocarbon based chemical agents. In this study, a new hydrocarbon based wettability modifier is introduced to alter wettability of carbonate and sandstone rocks to preferentially gas wetting condition. Static and dynamic contact angle measurements, spontaneous imbibition and core flooding tests were conducted to investigate the effect of proposed... 

    Effects of contact angle hysteresis on drop manipulation using surface acoustic waves

    , Article Theoretical and Computational Fluid Dynamics ; Volume 34, Issue 1-2 , 2020 , Pages 145-162 Sheikholeslam Noori, M ; Taeibi Rahni, M ; Shams Taleghani, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Surface acoustic waves have gained much attention in flow control given the effects arising from acoustic streaming. In this study, the hydrodynamic interference of a drop under surface acoustic waves is comprehensively investigated and the contact angle hysteresis effects are considered, too. This paper reveals the effects of some control parameters such as wave amplitude and wave frequency on the dynamical behaviors of drop. For these purposes, a multiple-relaxation-time color-gradient model lattice Boltzmann method is developed. In these case studies, wave frequency and amplitude were in the ranges of 20–60 MHz and 0.5–2 nm, respectively. In addition, the density ratio of 1000, the... 

    Super gas wet and gas wet rock surface: state-of- the art evaluation through contact angle analysis

    , Article Petroleum ; 2021 ; 24056561 (ISSN) Azadi Tabar, M ; Dehghan Monfared, A ; Shayegh, F ; Barzegar, F ; Ghazanfari, M. H ; Sharif University of Technology
    KeAi Communications Co  2021
    Abstract
    Recently, super gas wet and gas wet surfaces have been extensively attended in petroleum industry, as supported by the increasing number of publications in the last decade related to wettability alteration in gas condensate reservoirs. In many cases, contact angle measurement has been employed to assess the wettability alteration. Even though contact angle measurement seems to be a straightforward approach, there exist many misuses of this technique and consequently misinterpretation of the corresponding results. In this regard, a critical inspection of the most recent updated concepts and the intervening parameters in the contact angle based wettability evaluation of liquid-solid-gas... 

    Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nanofibrous membrane for high flux membrane distillation

    , Article Journal of Membrane Science ; Volume 537 , 2017 , Pages 140-150 ; 03767388 (ISSN) Seyed Shahabadi, S. M ; Rabiee, H ; Seyedi, S. M ; Mokhtare, A ; Brant, J. A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this study, superhydrophobic dual layer membranes with highly porous structure were fabricated using electrospinning and electrospraying techniques. Electrospinning method was used to produce the support nanofibrous layer using polyvinylidene fluoride-co-hexafluoropropylene (PH) as the polymer and a mixed solvent system of N,N-Dimetylformamide (DMF) and acetone. Afterwards, hydrophobic, functionalized TiO2 nanoparticles were deposited on the surface of the support layer using the electrospraying technique. TiO2 chemical functionalization and their deposition on the support layer were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The...