Loading...
Search for: contact-friction
0.006 seconds

    Implementation of the eXtended finite element method (X-FEM) in frictional contact problems

    , Article MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications - NUMIFORM '07: 9th International Conference on Numerical Methods in Industrial Forming Processes, Porto, 17 June 2007 through 21 June 2007 ; Volume 908 , 2007 , Pages 1573-1578 ; 0094243X (ISSN) Khoei, A. R ; Anahid, M ; Yadegaran, I ; Nikbakht, M ; Sharif University of Technology
    2007
    Abstract
    Numerical modeling of engineering contact problems is one of the most difficult and demanding tasks in computational mechanics. In this paper, the extended finite element method is employed to simulate the presence of discontinuities caused by frictional contact based on the penalty approach. The FEM approximation is enriched by applying additional terms to simulate the frictional behavior of contact between two bodies. The penalty method, which is one of the most commonly used techniques for contact problems, is used to model the penetration between two contacting boundaries and the normal contact force is related to the penetration by a penalty parameter. Finally, numerical examples are... 

    3D dynamic modeling of large plastic deformations in powder die-pressing

    , Article Proceedings of the 10th International Conference on Technology of Plasticity, ICTP 2011, 25 September 2011 through 30 September 2011, Aachen ; September , 2011 , Pages 1010-1015 ; 9783514007840 (ISBN) Khoei, A. R ; Biabanaki, S. O. R ; Parvaneh, S. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, a computational algorithm is presented in three-dimensional dynamic modeling of powder compaction processes. The contact node-to-surface algorithm is employed to impose the contact constraints in large deformation frictional contact, and the contact frictional slip is modified by the Coulomb friction law to simulate the frictional behavior between the rigid punch and the work-piece. The 3D nonlinear contact friction algorithm is employed together with a double-surface cap plasticity model within the framework of large FE deformation in order to predict the non-uniform relative density distribution during the dynamic simulation of powder die-pressing. Finally, the performance... 

    A new computational algorithm for contact friction modeling of large plastic deformation in powder compaction processes

    , Article International Journal of Solids and Structures ; Volume 46, Issue 2 , 2009 , Pages 287-310 ; 00207683 (ISSN) Khoei, A. R ; Biabanaki, S. O. R ; Vafa, A. R ; Yadegaran, I ; Keshavarz, Sh ; Sharif University of Technology
    2009
    Abstract
    In this paper, the large deformation frictional contact of powder forming process is modeled based on a new computational algorithm by imposing the contact constraints and modifying the contact properties of frictional slip. A simple and efficient numerical algorithm is presented for imposing the contact constraints and frictional contact properties based on the node-to-surface contact technique to simulate the large deformation contact problem in the compaction process of powder. The Coulomb friction law is used to simulate the friction between the rigid punch and the workpiece by the use of penalty approach. A double-surface cap plasticity model is employed together with the nonlinear... 

    An enriched finite element algorithm for numerical computation of contact friction problems

    , Article International Journal of Mechanical Sciences ; Volume 49, Issue 2 , 2007 , Pages 183-199 ; 00207403 (ISSN) Khoei, A. R ; Nikbakht, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, the extended finite element method (XFEM) is employed to model the presence of discontinuities caused by frictional contact. The method is used in modeling strong discontinuity within a standard finite element framework. In extended finite element method (XFEM) technique, the special functions are included in standard FEM to simulate discontinuity without considering the boundary conditions in meshing the domain. In this study, the classical finite element approximation is enriched by applying additional terms to simulate the frictional behavior of contact between two bodies. These terms, which are included for enrichment of nodal displacements, depend on the contact condition... 

    3D dynamic modeling of powder forming processes via a simple and efficient node-to-surface contact algorithm

    , Article Applied Mathematical Modelling ; Volume 37, Issue 1-2 , 2013 , Pages 443-462 ; 0307904X (ISSN) Khoei, A. R ; Biabanaki, S. O. R ; Parvaneh, S. M ; Sharif University of Technology
    2013
    Abstract
    In this paper, a simple and efficient contact algorithm is presented for the evaluation of density distribution in three-dimensional dynamic modeling of powder compaction processes. The contact node-to-surface algorithm is employed to impose the contact constraints in large deformation frictional contact, and the contact frictional slip is modified by the Coulomb friction law to simulate the frictional behavior between the rigid punch and the work-piece. The 3D nonlinear contact friction algorithm is employed together with a double-surface cap plasticity model within the framework of large finite element deformation in order to predict the non-uniform relative density distribution during the... 

    Contact friction simulation in powder compaction process based on the penalty approach

    , Article Materials and Design ; Volume 29, Issue 6 , 2008 , Pages 1199-1211 ; 02613069 (ISSN) Keshavarz, Sh ; Khoei, A. R ; Khaloo, A. R ; Sharif University of Technology
    Elsevier Ltd  2008
    Abstract
    In this paper, the influence of powder-tool friction on the mechanical properties of the final product is investigated in pressing metal powders. A computational algorithm is presented for simulation of frictional contact in the compaction process of powder. The large deformation finite element (FE) formulation is characterized by the use of penalty approach in which a plasticity theory of friction is incorporated to simulate sliding resistance at the powder-tool interface. The constitutive relations for friction are derived from a Coulomb friction law. A double-surface cap plasticity model is employed together with the nonlinear contact friction behavior in numerical simulation of powder... 

    Extended finite element method in plasticity forming of powder compaction with contact friction

    , Article International Journal of Solids and Structures ; Volume 43, Issue 18-19 , 2006 , Pages 5421-5448 ; 00207683 (ISSN) Khoei, A. R ; Shamloo, A ; Azami, A. R ; Sharif University of Technology
    2006
    Abstract
    In this paper, a new computational technique is presented based on the eXtended Finite Element Method (X-FEM) in pressure-sensitive plasticity of powder compaction considering frictional contact. In X-FEM, the need for mesh adaption to discontinuity interface is neglected and the process is accomplished by partitioning the domain with some triangular sub-elements whose Gauss points are used for integration of the domain of the elements. The technique is applied by employing additional functions, which are added to approximate the displacement field of the elements located on the interface. The double-surface cap plasticity model is employed within the X-FEM framework in numerical simulation... 

    Contact friction modeling with the extended finite element method (X-FEM)

    , Article Journal of Materials Processing Technology ; Volume 177, Issue 1-3 , 2006 , Pages 58-62 ; 09240136 (ISSN) Khoei, A. R ; Nikbakht, M ; Sharif University of Technology
    2006
    Abstract
    In this paper, the extended finite element method (X-FEM) is developed for modeling of frictional contact problems. In order to model the frictional contact behavior within the standard finite element framework, the special functions are included in standard FE method to simulate discontinuity without considering the boundary conditions in meshing the domain. The classical finite element approximation is therefore enriched by applying additional terms to simulate the frictional behavior of contact between two bodies. These terms, which are included for enrichment of nodal displacements, depend on the contact condition between two surfaces. The partition of unity method is applied to... 

    Dynamic modeling of powder compaction processes via a simple contact algorithm

    , Article International Journal of Mechanical Sciences ; Volume 64, Issue 1 , 2012 , Pages 196-210 ; 00207403 (ISSN) Khoei, A. R ; Biabanaki, S. O. R ; Parvaneh, S. M ; Sharif University of Technology
    2012
    Abstract
    In this paper, the dynamic modeling of powder compaction processes is presented based on a simple contact algorithm to evaluate the distribution of final density in dynamic powder die-pressing. The large deformation frictional contact is employed by imposing the contact constraints via the contact node-to-surface formulation and modifying the contact properties of frictional slip. The Coulomb friction law is used to simulate the friction between the rigid punch and the work-piece. The nonlinear contact friction algorithm is employed together with a double-surface cap plasticity model within the framework of large FE deformation in order to predict the non-uniform relative density... 

    3D contact modelling of large plastic deformation in powder forming processes

    , Article International Journal of Material Forming ; Volume 5, Issue 2 , 2012 , Pages 163-173 ; 19606206 (ISSN) Khoei, A. R ; Biabanaki, S. O. R ; Taheri Mousavi, S. M ; Vafa, A. R ; Parvaneh, S. M ; Sharif University of Technology
    2012
    Abstract
    In this paper, the three-dimensional large frictional contact deformation of powder forming process is modeled using a node-to-surface contact algorithm based on the penalty and augmented-Lagrange approaches. The technique is applied by imposing the normal and tangential contact constraints and modifying the contact properties of frictional slip. The Coulomb friction law is employed to simulate the friction between the rigid punch and the work piece. It is shown that the augmented-Lagrange technique significantly improves imposing of the constraints on contact surfaces. In order to predict the non-uniform relative density and stress distributions during the large deformation of powder... 

    Modelling of powder forming processes in transient-dynamic analysis of large plastic deformations

    , Article Advanced Materials Research, 13 July 2011 through 16 July 2011 ; Volume 445 , July , 2012 , Pages 362-367 ; 10226680 (ISSN) ; 9783037853467 (ISBN) Khoei, A. R ; Biabanaki, S. O. R ; Parvaneh, S. M ; Turkish Airlines; TTNET; Gedik Holding; Istanbul Development Agency ; Sharif University of Technology
    2012
    Abstract
    In this paper, a transient-dynamic analysis is presented for large deformation of powder forming process. The technique is employed using the contact friction algorithm and plasticity behavior of powder. The contact algorithm is applied by imposing the contact constraints and modifying the contact properties of frictional slip through the node-to-surface contact algorithm. A double-surface cap plasticity model is used for highly nonlinear behavior of powder. In order to predict the non-uniform density and stress distributions during powder die-pressing, the numerical schemes are examined for accuracy and efficiency in modeling of a set of powder components  

    A new computational algorithm for 3D contact modeling of large plastic deformation in powder forming processes

    , Article Computational Materials Science ; Volume 46, Issue 1 , 2009 , Pages 203-220 ; 09270256 (ISSN) Khoei, A. R ; Biabanaki, S. O. R ; Vafa, A. R ; Taheri Mousavi, S. M ; Sharif University of Technology
    2009
    Abstract
    In this paper, the three-dimensional large deformation frictional contact of powder forming process is modeled using a simple computational algorithm based on the augmented-Lagrange approach. The technique is applied by imposing the contact constraints and modifying the contact properties of frictional slip through the node-to-surface (NTS) contact algorithm. The Coulomb friction law is employed to simulate the friction between the rigid punch and the work-piece by the use of penalty and augmented-Lagrange approaches. It is shown that the augmented-Lagrange technique significantly improves imposing of the constraints on contact surfaces. The nonlinear contact friction algorithm is employed... 

    Model of contact friction based on extreme value statistics

    , Article Friction ; Volume 7, Issue 4 , 2019 , Pages 327-339 ; 22237690 (ISSN) Malekan, A ; Rouhani, S ; Sharif University of Technology
    Tsinghua University Press  2019
    Abstract
    We propose a model based on extreme value statistics (EVS) and combine it with different models for single-asperity contact, including adhesive and elasto-plastic contacts, to derive a relation between the applied load and the friction force on a rough interface. We determine that, when the summit distribution is Gumbel and the contact model is Hertzian, we obtain the closest conformity with Amonton’s law. The range over which Gumbel distribution mimics Amonton’s law is wider than that of the Greenwood–Williamson (GW) model. However, exact conformity with Amonton’s law is not observed for any of the well-known EVS distributions. Plastic deformations in the contact area reduce the relative... 

    The sliding frictional contact problem in two dimensional graded materials loaded by a flat stamp

    , Article Advanced Materials Research, 7 January 2012 through 8 January 2012 ; Volume 463-464 , January , 2012 , Pages 336-342 ; 10226680 (ISSN) ; 9783037853634 (ISBN) Khajehtourian, R ; Adibnazari, S ; Tashi, S ; Sharif University of Technology
    2012
    Abstract
    In this article, the sliding frictional contact problem for a half-plane which is graded in two dimensions is studied. The effect of medium properties gradient and coefficient of friction in contact mechanics of two dimensional (2D) graded materials which is loaded by a flat stamp have been investigated by developing two Finite Element (FE) models, in macro and micro scales. Discretizing the graded half-plane by quadrants for whose material properties are specified at the centroids by Mori-Tanaka method in both directions has been used to model the 2D FGM in macro scale. In micro scale, the ideal solid quadrant particles which are spatially distributed in a homogeneous matrix used to model... 

    Optimal design of powder compaction processes via genetic algorithm technique

    , Article Finite Elements in Analysis and Design ; Volume 46, Issue 10 , 2010 , Pages 843-861 ; 0168874X (ISSN) Khoei, A. R ; Keshavarz, S ; Biabanaki, S. O. R ; Sharif University of Technology
    Abstract
    In this paper, an optimal design is performed for powder die-pressing process based on the genetic algorithm approach. It includes the shape optimization of powder component, the optimal design of punch movements, and the friction optimization of powdertool interface. The genetic algorithm is employed to perform an optimal design based on a fixed-length vector of design variables. The technique is used to obtain the desired optimal compacted component by verifying the prescribed constraints. The numerical modeling of powder compaction simulation is applied based on a large deformation formulation, powder plasticity behavior, and frictional contact algorithm. A Lagrangian finite element... 

    The genetic algorithm approach for shape optimization of powder compaction processes considering contact friction and cap plasticity models

    , Article Engineering Computations (Swansea, Wales) ; Volume 27, Issue 3 , 2010 , Pages 322-353 ; 02644401 (ISSN) Khoei, A. R ; Keshavarz, Sh ; Khaloo, A. R ; Sharif University of Technology
    Abstract
    Purpose - The purpose of this paper is to present a shape optimization technique for powder forming processes based on the genetic algorithm approach. The genetic algorithm is employed to optimize the geometry of component based on a fixed-length vector of design variables representing the changes in nodal coordinates. The technique is used to obtain the desired optimal compacted component by changing the boundaries of component and verifying the prescribed constraints. Design/methodology/approach - The numerical modeling of powder compaction simulation is applied based on a large deformation formulation, powder plasticity behavior, and frictional contact algorithm. A Lagrangian finite...