Loading...
Search for: continuous-conduction-mode
0.011 seconds

    Sliding-mode control of z-source inverter

    , Article 34th Annual Conference of the IEEE Industrial Electronics Society, IECON 2008, Orlando, FL, 10 November 2008 through 13 November 2008 ; 2008 , Pages 947-952 ; 9781424417667 (ISBN) Rajaei, A.H ; Kaboli, S ; Emadi, A ; Sharif University of Technology
    IEEE Computer Society  2008
    Abstract
    In this paper, sliding-mode control (SMC) is applied to a z-source converter to control output dc voltage of impedance network. The converter is assumed working in continuous conduction mode (CCM). First a comprehensive review of the literature for z-source inverter (ZSI) and use of sliding mode control in switched converters are performed. The procedure of SMC design used in ZSI is presented. The simulations for the application of SMC in z-source inverter are made and the results are illustrated. The results verify the effectiveness and robustness of the controller. © 2008 IEEE  

    A novel control strategy for power factor corrections based on predictive algorithm

    , Article PEDSTC 2010 - 1st Power Electronics and Drive Systems and Technologies Conference, 17 February 2010 through 18 February 2010, Tehran ; 2010 , Pages 117-121 ; 9781424459728 (ISBN) Yazdanian, M ; Farhangi, S ; Zolghadri, M. R ; Sharif University of Technology
    2010
    Abstract
    A novel control strategy based on predictive control is presented for continuous conduction mode boost converter which operates as a power factor correction. In the proposed algorithm two horizons for the behavior of the circuit are predicted which improves the total harmonic distortion, mainly the low frequency harmonics. The algorithm doesn't need elaborating calculations therefore, implementation of the controller using low price processor is feasible. Moreover, an extra horizon of the prediction leads to expansion of the calculation time. Reduction of the harmonic distortion of the input current and improvement of the power factor have been demonstrated on an isolated boost PFC converter... 

    Design of a bridgeless PFC with line-modulated fixed off-time current control and zero-voltage switching

    , Article PECon2010 - 2010 IEEE International Conference on Power and Energy, 29 November 2010 through 1 December 2010 ; 2010 , Pages 129-134 ; 9781424489466 (ISBN) Haghi, R ; Zolghadri, M. R ; Nasirian, V ; Noroozi, N ; Sharif University of Technology
    Abstract
    In this paper, the Line-Modulated Fixed Off-Time method is used as the current control strategy for a Power Factor Corrector (PFC) pre-regulator. A zero voltage switching PWM (ZVS-PWM) auxiliary circuit is configured to perform ZVS in the switches. Soft commutation of the main switch is achieved without additional current stress. A significant reduction in the total conduction loss is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path .The proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode... 

    Designing an adjustable wide range regulated current source

    , Article IEEE Transactions on Power Electronics ; Volume 25, Issue 1 , 2010 , Pages 197-208 ; 08858993 (ISSN) Beiranvand, R ; Rashidian, B ; Zolghadri, M. R ; Alavi, S. M. H ; Sharif University of Technology
    Abstract
    LLC resonant converter has been used widely as dc-dc converter for achieving constant dc voltage. In this paper, an LLC resonant converter, by adding an inductance to its conventional topology and considering the rectifying stage stray inductances, is proposed for an adjustable wide range regulated current source (20-200 A dc) for using as ion implanter's filament power supply. The additional inductor increases output current adjustment range and efficiency, especially at light loads. Transformer's leakage inductances and rectifying stage stray inductances have been considered. Because of these inductances, the rectifier stage always works in continuous conduction mode, and its conduction... 

    Modeling of the boost power factor correction rectifier in mixed conduction mode using PWA approximation

    , Article 2008 IEEE International Symposium on Industrial Electronics, ISIE 2008, Cambridge, 30 June 2008 through 2 July 2008 ; 2008 , Pages 190-195 ; 1424416655 (ISBN); 9781424416653 (ISBN) Tahami, F ; Gholami, B ; Ahmadian, H. M ; Sharif University of Technology
    2008
    Abstract
    PFC converters for higher power are commonly designed for continuous conduction mode (CCM). However, at light load, discontinuous conduction mode (DCM) will appear close to the crossover of the line voltage, causing the converter to switch between the two conduction modes. As a result, the converter dynamics change abruptly, producing input current distortion. In this article a piecewise affine approximation has been employed in modeling a boost power factor correction converter operated in the mixed conduction mode. This approach makes the new model very useful in large signal analysis of PFC rectifiers and design of controller. The results obtained from the proposed model are compared with...