Loading...
Search for: continuous-neural-networks
0.005 seconds

    Neuro-Skins: Dynamics, plasticity and effect of neuron type and cell size on their response

    , Article Neural Processing Letters ; 2018 , Pages 1-23 ; 13704621 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    We are introducing a new type of membrane, called neuro-skin or neuro-membrane. It is comprised of neurons embedded in a plastic membrane. The skin is smart and adaptive and is capable of providing desirable response to inputs intelligently. This way, the neuro-skin can be considered as a new type of neural network with adaptivity and learning capabilities. However, in this paper, only the response of neuro-skins to a dynamic input is studied. The membrane is modelled by nonlinear dynamic finite elements. Each finite element is considered as a cell of the neuro-skin which has a neuron. The neuron is the intelligent nucleus of the element. So, the finite elements are called finite... 

    Neuro-Skins: Dynamics, Plasticity and effect of neuron type and cell size on their response

    , Article Neural Processing Letters ; Volume 49, Issue 1 , 2019 , Pages 19-41 ; 13704621 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    We are introducing a new type of membrane, called neuro-skin or neuro-membrane. It is comprised of neurons embedded in a plastic membrane. The skin is smart and adaptive and is capable of providing desirable response to inputs intelligently. This way, the neuro-skin can be considered as a new type of neural network with adaptivity and learning capabilities. However, in this paper, only the response of neuro-skins to a dynamic input is studied. The membrane is modelled by nonlinear dynamic finite elements. Each finite element is considered as a cell of the neuro-skin which has a neuron. The neuron is the intelligent nucleus of the element. So, the finite elements are called finite... 

    Simulating dynamic plastic continuous neural networks by finite elements

    , Article IEEE Transactions on Neural Networks and Learning Systems ; Volume 25, Issue 8 , August , 2014 , Pages 1583-1587 ; ISSN: 2162237X Joghataie, A ; Torghabehi, O. O ; Sharif University of Technology
    Abstract
    We introduce dynamic plastic continuous neural network (DPCNN), which is comprised of neurons distributed in a nonlinear plastic medium where wire-like connections of neural networks are replaced with the continuous medium. We use finite element method to model the dynamic phenomenon of information processing within the DPCNNs. During the training, instead of weights, the properties of the continuous material at its different locations and some properties of neurons are modified. Input and output can be vectors and/or continuous functions over lines and/or areas. Delay and feedback from neurons to themselves and from outputs occur in the DPCNNs. We model a simple form of the DPCNN where the... 

    Neuroplasticity in dynamic neural networks comprised of neurons attached to adaptive base plate

    , Article Neural Networks ; Volume 75 , 2016 , Pages 77-83 ; 08936080 (ISSN) Joghataie, A ; Shafiei Dizaji, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a learning algorithm is developed for Dynamic Plastic Continuous Neural Networks (DPCNNs) to improve their learning of highly nonlinear time dependent problems. A DPCNN is comprised of a base medium, which is nonlinear and plastic, and a number of neurons that are attached to the base by wire-like connections similar to perceptrons. The information is distributed within DPCNNs gradually and through wave propagation mechanism. While a DPCNN is adaptive due to its connection weights, the material properties of its base medium can also be adjusted to improve its learning. The material of the medium is plastic and can contribute to memorizing the history of input-response similar...