Loading...
Search for: continuum-damage-model
0.008 seconds

    A continuum damage mechanics-based piecewise fatigue damage model for fatigue life prediction of fiber-reinforced laminated composites

    , Article International Journal of Engineering Transactions C: Aspects ; Volume 34, Issue 6 , 2021 , Pages 1512-1522 ; 24237167 (ISSN) Gholami, P ; Kouchakzadeh, M. A ; Farsi, M. A ; Sharif University of Technology
    Materials and Energy Research Center  2021
    Abstract
    The purpose of this study is to define a piecewise fatigue damage model (PFDM) for the prediction of damage in composite laminates under cyclic loading based on the continuum damage mechanics (CDM) model. Assuming that damage in fiber-reinforced plastic structures accumulates nonlinearly, a piecewise degradation growth function is defined and coupled with CDM and micromechanics approaches. The model divides the damage behavior of fiber, matrix, and fiber/matrix debonding at the ply scale, into three different stages. For generality, a fully multi-stage damage formulation on a single-ply level is employed. The unknown parameters of the PFDM are estimated according to obtained experimental... 

    3D modeling of damage growth and ductile crack propagation using adaptive FEM technique

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI ; 2011 , Pages 996-1007 ; 9788489925731 (ISBN) Moslemi, H ; Khoei, A.R ; Sharif University of Technology
    Abstract
    In this paper, the continuum damage mechanics model originally proposed by Lemaitre [1] is presented through an adaptive finite element method for three-dimensional ductile materials. The macro-crack initiation-propagation criterion is used based on the distribution of damage variable in the continuum damage model. The micro-crack closure effect is incorporated to simulate the damage evolution more realistic. The Zienkiewicz-Zhu posteriori error estimator is employed in conjunction with a weighted superconvergence patch recovery (SPR) technique at each patch to improve the accuracy of error estimation and data transfer process. Finally, the robustness and accuracy of proposed computational... 

    Stochastic fatigue life prediction of Fiber-Reinforced laminated composites by continuum damage Mechanics-based damage plastic model

    , Article International Journal of Fatigue ; Volume 152 , 2021 ; 01421123 (ISSN) Gholami, P ; Farsi, M. A ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the evolution of elastic–plastic damage in the composite laminates under fatigue conditions is modeled. Continuum damage mechanics (CDM) has been coupled with the bridge micromechanics model to estimate the fatigue damage and life for laminated composite structures. Based on the elastic–plastic bridging model, three damage variables are defined. These variables estimate the fiber, matrix, and fiber/matrix damage response at the ply scale. To model the beginning of plastic deformation, a yield function is utilized, and evolution equations of the damage variables are obtained. Then the developed deformation plastic model is calculated. The model parameters are calibrated by... 

    Fiber bridging in polypropylene-reinforced high-strength concrete: An experimental and numerical survey

    , Article Structural Concrete ; 2021 ; 14644177 (ISSN) Khaloo, A ; Daneshyar, A ; Rezaei, B ; Fartash, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Fracture process of fiber-reinforced concrete notched beams is investigated here. Polypropylene macrosynthetic fibers are utilized for reinforcing concrete specimens, and a high-strength mix design is used to produce strong bonds between the embossed polypropylene fibers and the cementitious matrix of beams. Considering different locations for the notch, this study focuses on bridging mechanism under different conditions using both experimental and numerical approaches. First mode of fracture occurs due to opening of crack faces. This mode of failure is simulated by imposing symmetric boundary conditions on middle-notched beams. Inducing the notch with an offset from the middle, mixed-mode... 

    Fiber bridging in polypropylene-reinforced high-strength concrete: An experimental and numerical survey

    , Article Structural Concrete ; Volume 23, Issue 1 , 2022 , Pages 457-472 ; 14644177 (ISSN) Khaloo, A ; Daneshyar, A ; Rezaei, B ; Fartash, A ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Fracture process of fiber-reinforced concrete notched beams is investigated here. Polypropylene macrosynthetic fibers are utilized for reinforcing concrete specimens, and a high-strength mix design is used to produce strong bonds between the embossed polypropylene fibers and the cementitious matrix of beams. Considering different locations for the notch, this study focuses on bridging mechanism under different conditions using both experimental and numerical approaches. First mode of fracture occurs due to opening of crack faces. This mode of failure is simulated by imposing symmetric boundary conditions on middle-notched beams. Inducing the notch with an offset from the middle, mixed-mode... 

    3D Modeling of damage growth and crack initiation using adaptive finite element technique

    , Article Scientia Iranica ; Volume 17, Issue 5 A , 2010 , Pages 372-386 ; 10263098 (ISSN) Moslemi, H ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In this paper, the continuum damage mechanics model originally proposed by Lemaitre (Journal of Engineering Materials and Technology. 1985; 107: 83-89) is presented through an adaptive finite element method for three-dimensional ductile materials. The macro-crack initiation-propagation criterion is used based on the distribution of damage variable in the continuum damage model. The microcrack closure effect is incorporated to simulate the damage evolution more realistic. The Zienkiewicz-Zhu posteriori error estimator is employed in conjunction with a weighted Superconvergence Patch Recovery (SPR) technique at each patch to improve the accuracy of error estimation and data transfer process....