Loading...
Search for: contrast-to-noise-ratio
0.005 seconds

    A novel local spline smoothing-based approach for medical ultrasound images enhancement

    , Article 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2012, 17 December 2012 through 19 December 2012 ; December , 2012 , Pages 755-758 ; 9781467316668 (ISBN) Afdideh, F ; Khasheei Rad, R ; Resalat, S. N ; Sabeti, E ; Sharif University of Technology
    2012
    Abstract
    In this work, a novel local spline smoothing-based approach is proposed in order to despeckling medical ultrasound images. For better comparison, firstly nine conventional statistical spatial filters were applied on the ultrasound images and the results evaluated by quantitative indices of contrast to noise ratio (CNR) and speckle signal to noise ratio (SSNR). Secondly, one-dimensional cubic spline smoothing (1DCSS) function was applied on the whole speckled image as the first proposed approach. Finally, as the second proposed approach, 1DCSS was applied locally on the sliding windows of the ultrasound image then conventional statistical spatial filters were applied. The results indicate... 

    Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging

    , Article RSC Advances ; Volume 5, Issue 59 , May , 2015 , Pages 47529-47537 ; 20462069 (ISSN) Moradi, S ; Akhavan, O ; Tayyebi, A ; Rahighi, R ; Mohammadzadeh, M ; Saligheh Rad, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Superparamagnetic iron oxide (SPIO) nanomaterials are widely used as magnetic resonance imaging (MRI) contrast agents (CAs). These CAs significantly shorten transverse relaxation time (T2) and so decrease the intensity of the T2-weighted MRI (negative contrast imaging). However, the partial-volume effect is known to be one of the problems in negative contrast MRI. In this work, SPIO nanoparticles were modified by dextran and graphene oxide (GO) nanosheets to achieve a positive contrast MRI with high intensity. This modification resulted in shortening the longitudinal relaxation time (T1) of the SPIO nanoparticles (in addition to the T2 shortening).... 

    QCT: A measuring tool dedicated to the estimation of image parameters for quality assurance/quality control programs of ct scanners

    , Article 15th IEEE International Symposium on Medical Measurements and Applications, MeMeA 2020, 1 June 2020 through 3 June 2020 ; July , 2020 Khodajou Chokami, H ; Hosseini, S. A ; Ghorbanzadeh, M ; Mohammadi, M ; IEEE; IEEE Instrumentation and Measurement Society; IEEE Sensors Council Italy Chapter; Politecnica di Bari; Politecnico di Torino; Societa Italiana di Analisi del Movimento in Clinica ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Computed Tomography (CT) is one of the most widely used screening and diagnostic tools in medical imaging centers. Considering IAEA HUMAN HEALTH SERIES No. 19 and the American College of Radiology (ACR) Accreditation Program, quality assurance (QA) and quality control (QC) are mandatory programs to periodically monitor the system condition to promote the effective utilization of ionization radiation for a diagnostic outcome through obtaining and retaining appropriate image quality and reduction of patient dose. Computational phantoms (CPs) are the key tool to monitor system condition. The commercial QC phantoms are expensive products and are not flexible enough for user demands. In this... 

    Cardiac contraction motion compensation in gated myocardial perfusion SPECT: a comparative study

    , Article Physica Medica ; Volume 49 , 2018 , Pages 77-82 ; 11201797 (ISSN) Salehi, N ; Rahmim, A ; Fatemizadeh, E ; Akbarzadeh, A ; Farahani, M. H ; Farzanefar, S ; Ay, M. R ; Sharif University of Technology
    Associazione Italiana di Fisica Medica  2018
    Abstract
    Introduction: Cardiac contraction significantly degrades quality and quantitative accuracy of gated myocardial perfusion SPECT (MPS) images. In this study, we aimed to explore different techniques in motion-compensated temporal processing of MPS images and their impact on image quality and quantitative accuracy. Material and method: 50 patients without known heart condition underwent gated MPS. 3D motion compensation methods using Motion Freezing by Cedars Sinai (MF), Log-domain Diffeomorphic Demons (LDD) and Free-Form Deformation (FFD) were applied to warp all image phases to fit the end-diastolic (ED) phase. Afterwards, myocardial wall thickness, myocardial to blood pool contrast, and...