Loading...
Search for: control-architecture
0.007 seconds

    A new method to control heat and mass transfer to work piece in a GMAW process

    , Article Journal of Process Control ; Volume 22, Issue 6 , 2012 , Pages 1087-1102 ; 09591524 (ISSN) Mousavi Anzehaee, M ; Haeri, M ; Sharif University of Technology
    2012
    Abstract
    It is proposed to employ melting rate, heat input, and detaching droplet diameter as controlled variables to control heat and mass transfer to work piece in a gas metal arc welding process. A two-layer architecture with cascade configuration of PI and MPC controllers is implemented to incorporate existing constraints on the process variables, improve transient behavior of the closed-loop responses and reduce interaction level. Computer simulation results are presented to indicate usefulness of the proposed controlled variables selection and applying two-layer control architecture to control heat and mass transfer to work piece  

    Bio-inspired decentralized architecture for walking of a 5-link biped robot with compliant knee joints

    , Article International Journal of Control, Automation and Systems ; 2018 ; 15986446 (ISSN) Yazdani, M ; Salarieh, H ; Saadat Foumani, M ; Sharif University of Technology
    Institute of Control, Robotics and Systems  2018
    Abstract
    Animal walking is one of the most robust and adaptive locomotion mechanisms in the nature, involves sophisticated interactions between neural and biomechanical levels. It has been suggested that the coordination of this process is done in a hierarchy of levels. The lower layer contains autonomous interactions between muscles and spinal cord and the higher layer (e.g. the brain cortex) interferes when needed. Inspiringly, in this study we present a hierarchical control architecture with a state of the art intrinsic online learning mechanism for a dynamically walking 5-link biped robot with compliant knee joints. As the biological counterpart, the system is controlled by independent control... 

    Power efficient nanophotonic on-chip network for future large scale multiprocessor architectures

    , Article Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures, NANOARCH 2011, 8 June 2011 through 9 June 2011, San Diego, CA ; 2011 , Pages 114-121 ; 9781457709944 (ISBN) Koohi, S ; Hessabi, S ; Sharif University of Technology
    2011
    Abstract
    This paper proposes new architectures for data and control planes in a nanophotonic networks-on-chip (NoC) with the key advantages of scalability to large scale networks, constant node degree, and simplicity. Moreover, we propose a minimal deterministic routing algorithm for the data network which leads to small and simple photonic switches. Built upon the proposed novel topology, we present a scalable all-optical NoC, referred to as 2D-HERT, which offers passive routing of optical data streams based on their wavelengths. Utilizing wavelength routing method, Wavelength Division Multiplexing (WDM) technique, and a new all-optical control architecture, our proposed optical NoC eliminates the... 

    Design and construction of a non-linear model predictive controller for building's cooling system

    , Article Building and Environment ; Volume 133 , 2018 , Pages 237-245 ; 03601323 (ISSN) Erfani, A ; Rajabi Ghahnaviyeh, A ; Boroushaki, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This research aims to optimize a multi-zone Air Handling Unit's (AHU) energy consumption by using a Non-linear Model Predictive Control (NMPC) approach. In this paper, Genetic Algorithm (GA) and Non-linear autoregressive network with exogenous inputs (NARX) have been utilized to design NMPC for a multi-zone AHU. The NMPC problem could be divided into two main sections: internal model and the optimizer. NARX serves as the controller's internal model to predict the building's thermal dynamics. GA is then used to solve the NMPC problem and find the optimal value of the control signals at each time step. The proposed NMPC jointly minimizes energy consumption of the AHU and the deviation from the... 

    Position control of ionic polymer-metal composites using fuzzy logic

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 11 , 2009 , Pages 575-581 ; 9780791848722 (ISBN) Radmard, S ; Honarvar, M ; Alasty, A ; Meghdari, A ; Zohor, H ; Sharif University of Technology
    2009
    Abstract
    The Ionic polymer-metal composites (IPMCs) form an important category of electroactive polymers which generate large deformation under a low driving voltage. In this paper an empirical model of IPMC is developed by measuring the step response of a 23 mmx3.6 mmx0.16 mm IPMC strip in a cantilever configuration. Moreover, a model-based precision position control of an IPMC base on the fuzzy logic is presented. Open-loop position responses of an IPMC are not repeatable, and hence closed-loop precision control is of critical importance to ensure proper functioning, repeatability and reliability. A CCD camera was used to observe the closed loop response of the IPMC strip in order to control this... 

    Adaptive sliding mode control of a piezo-actuated bilateral teleoperated micromanipulation system

    , Article Precision Engineering ; Volume 35, Issue 2 , 2011 , Pages 309-317 ; 01416359 (ISSN) Motamedi, M ; Ahmadian, M. T ; Vossoughi, G ; Rezaei, S. M ; Zareinejad, M ; Sharif University of Technology
    Abstract
    Piezoelectric actuators are widely used in micro manipulation applications. However, hysteresis nonlinearity limits the accuracy of these actuators. This paper presents a novel approach for utilizing a piezoelectric nano-stage as the slave manipulator of a teleoperation system based on a sliding mode controller. The Prandtl-Ishlinskii (PI) model is used to model actuator hysteresis in feedforward scheme to cancel out this nonlinearity. The presented approach requires full state and force measurements at both the master and slave sides. Such a system is costly and also difficult to implement. Therefore, sliding mode unknown input observer (UIO) is proposed for full state and force...