Loading...
Search for: controllable-loads
0.008 seconds

    Improving direct load control implementation by an inititative load control method

    , Article EPDC 2013 - 18th Electric Power Distribution Network Conference ; 2013 ; ISBN: 9781480000000 Rastegar, M ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Sharif University of Technology
    Abstract
    Demand response (DR) as a state-of-the-art program is accommodated in the energy efficiency contexts of the smart grid. Lack of the customer knowledge about how to respond to the time-differentiated tariffs and offered controlling signals is the major obstacle in the way of broad DR implementing. As a solution, an optimization method, namely load control (LC), is proposed to automatically control the on/off status of the responsive appliances in a smart home. This paper focuses on the direct load control (DLC) program in the category of incentive-based DR programs. LC is extended to consider inconvenience cost of the DLC implementation for DLC program participants. Outputs of the extended LC... 

    Improving direct load control implementation by an inititative load control method

    , Article EPDC 2013 - 18th Electric Power Distribution Network Conference ; 2013 , Pages 1-5 ; 9781479900923 (ISBN) Rastegar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Sharif University of Technology
    2013
    Abstract
    Demand response (DR) as a state-of-the-art program is accommodated in the energy efficiency contexts of the smart grid. Lack of the customer knowledge about how to respond to the time-differentiated tariffs and offered controlling signals is the major obstacle in the way of broad DR implementing. As a solution, an optimization method, namely load control (LC), is proposed to automatically control the on/off status of the responsive appliances in a smart home. This paper focuses on the direct load control (DLC) program in the category of incentive-based DR programs. LC is extended to consider inconvenience cost of the DLC implementation for DLC program participants. Outputs of the extended LC... 

    Voltage regulation through smart utilization of potential reactive power resources

    , Article Proceedings - UKSim 5th European Modelling Symposium on Computer Modelling and Simulation, EMS 2011, 16 November 2011 through 18 November 2011, Madrid ; 2011 , Pages 293-298 ; 9780769546193 (ISBN) Kazari, H ; Abbaspour Tehrani Fard, A ; Dobakhshari, A. S ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    The introduction of demand response concept, in addition to increment of penetration of distributed generation (DG) based on renewable energies, make opportunities for the novel control schemes to be integrated in power system on a smart grid framework. Voltage control methods in power systems needs proper coordination among reactive power resources and conventional volt/var control equipments. In this work, potential reactive power resources are investigated and then, reactive power output of renewable DG units and controllable loads along with operation of conventional voltage controllers are optimized using a centralized control scheme. Considering the variability of demand and... 

    Control of series resonant converter with robust performance against load and power circuit components uncertainties

    , Article PEDSTC 2010 - 1st Power Electronics and Drive Systems and Technologies Conference, 17 February 2010 through 18 February 2010, Tehran ; 2010 , Pages 122-128 ; 9781424459728 (ISBN) Mohammadpour, A ; Mokhtari, H ; Zolghadri, M. R ; Sharif University of Technology
    2010
    Abstract
    Robust performance controller design for duty-cycle controlled series resonant converter is proposed in this paper. The uncertainties of the converter are analyzed with load variation and power circuit components tolerances are taken into consideration. Additionally, a nominal performance H ∞ controller is designed. Closed-loop system is simulated and simulation results of robust controller are compared with H∞ nominal performance controller  

    Application of edge theorem for robust stability analysis of a power system with participating wind power plants in automatic generation control task

    , Article IET Renewable Power Generation ; Volume 11, Issue 7 , 2017 , Pages 1049-1057 ; 17521416 (ISSN) Toulabi, M ; Bahrami, S ; Ranjbar, A. M ; Sharif University of Technology
    Institution of Engineering and Technology  2017
    Abstract
    This study investigates the dynamic participation of wind power plants (WPPs) in the automatic generation control (AGC) task. The pre-specified model of wind farm in the AGC studies has been used. It is shown that operating of WPPs at the command mode results in a significant improvement in the frequency behaviour of power system due to their faster response. However, the WPPs may change their operation mode from the command mode to the maximum power point mode according to the wind speed conditions and load variations. This reduces the improvement in the frequency response. In this condition, the shortage in the wind power should be compensated by the conventional units. Thus, the share of... 

    Emotional learning based intelligent controller for a PWR nuclear reactor core during load following operation

    , Article Annals of Nuclear Energy ; Volume 35, Issue 11 , 2008 , Pages 2051-2058 ; 03064549 (ISSN) Seidi Khorramabadi, S ; Boroushaki, M ; Lucas, C ; Sharif University of Technology
    2008
    Abstract
    The design and evaluation of a novel approach to reactor core power control based on emotional learning is described. The controller includes a neuro-fuzzy system with power error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critic's stress is reduced. Simulation results show that the controller has good convergence and performance robustness characteristics over a wide range of operational parameters. © 2008 Elsevier Ltd. All rights reserved  

    A comparative study on current control methods for load balancing and power factor correction using STATCOM

    , Article 2005 IEEE Russia Power Tech, PowerTech, St. Petersburg, 27 June 2005 through 30 June 2005 ; 2005 ; 9781424418749 (ISBN) Hasanzadeh, A ; Parniani, M ; Sadriyeh, S. M. R ; Sharif University of Technology
    2005
    Abstract
    This paper investigates several current control methods for load balancing and power factor correction based on distribution Static Compensator (STATCOM). Two different configurations are considered for STATCOM; a three leg inverter, and three single phase inverters. It is assumed that the STATCOM is associated with a load that is remote from the supply. After a brief introduction, control structure based on PWM method and simulation results using PSCAD are presented. Next, the same system is simulated using hystersis control method. Both methods employ the instantaneous symmetrical components theory for load balancing and power factor correction. At the end, a comparison between two methods... 

    Centralized optimal management of a smart distribution system considering the importance of load reduction based on prioritizing smart home appliances

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 19 , 2022 , Pages 3874-3893 ; 17518687 (ISSN) Sanaei, S ; Haghifam, M. R ; Safdarian, A ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The distribution system's economic operation is significantly impacted by the management of distributed generation (DG) resources, energy storage (ES), and controllable loads. The paper employs a smart distribution system that incorporates dispatchable and non-dispatchable DG resources, as well as battery storage, in addition to the demand response (DR) scheme. New modelling was performed in hourly steps to achieve the optimal unit commitment. In smart homes, appliances are prioritized and classified into four types: adjustable, interruptible, shiftable, and uncontrollable loads. Load reduction in smart homes is also considered based on load prioritization and customer participation in the... 

    Transactive Coordination Approach for Energy Management in Microgrids (MGs)

    , Ph.D. Dissertation Sharif University of Technology Saber, Hossein (Author) ; Ehsan, Mehdi (Supervisor) ; Moeini Aghtaei, Moein (Co-Supervisor)
    Abstract
    Nowadays, due to the rapid growth of electric energy consumption at the distribution network level and the environmental problems caused by conventional generation units, it has become necessary to provide appropriate solutions to increase the penetration of renewable energy sources and optimally manage the consumers/prosumers at the demand side of power systems. In recent years, various methods have been proposed for demand-side energy management models and distributed energy resources (DERs) integration into the distribution network. Amongst them, the transactive coordination approach that employs the economic and control mechanisms for the management of DERs and responsive loads has been... 

    Dynamic participation of wind farms in system frequency control

    , Article IEEE PES Innovative Smart Grid Technologies Conference Europe, 14 October 2012 through 17 October 2012 ; October , 2012 ; 9781467325974 (ISBN) Toulabi, M ; Ranjbar, A. M ; Karimi, H ; Shiroie, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, the participation of wind farms in load frequency control (LFC) is studied. A previously proposed macromodel for the wind farm is employed to regulate its output power. The wind farm including its proposed control strategy is incorporated into the conventional LFC model. The proposed LFC structure is able to dynamically maintain the system frequency at the nominal value against the power imbalances. To achieve proper transient response, the integral control parameter of the LFC controller is optimized using the genetic algorithm (GA). To verify the effectiveness of the proposed method, several simulation case studies are carried out. The results show that the wind farm can... 

    Load-frequency control of interconnected power system using emotional learning-based intelligent controller

    , Article International Journal of Electrical Power and Energy Systems ; Volume 36, Issue 1 , March , 2012 , Pages 76-83 ; 01420615 (ISSN) Farhangi, R ; Boroushaki, M ; Hosseini, S. H ; Sharif University of Technology
    2012
    Abstract
    In this paper a novel approach based on the emotional learning is proposed for improving the load-frequency control (LFC) system of a two-area interconnected power system with the consideration of generation rate constraint (GRC). The controller includes a neuro-fuzzy system with power error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critic's stress is reduced. The convergence and performance of the proposed controller, both in presence and absence of GRC, are compared with those of proportional integral (PI), fuzzy logic (FL), and hybrid neuro-fuzzy (HNF)... 

    Regulator and tracking system design for a single-rod hydraulic actuator via pole-placement approach

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 7, Issue PARTS A AND B , November , 2011 , Pages 173-181 ; 9780791854938 (ISBN) Moradi, H ; Hajikolaei, K. H ; Bakhtiari Nejad, F ; Sharif University of Technology
    2011
    Abstract
    Due to the nonlinear dynamics of hydraulic systems, applying high performance closed-loop controllers is complicated. In this paper, a single-rod hydraulic actuator is considered in which load displacement (for positioning purposes) is controlled via manipulation of the input voltage to the servo-valve. Dynamics of the servo-valve is described by first and second order transfer functions (named as Models 1 and 2). Through linearization of the system around its operating points, dynamics of the hydraulic actuator is represented in the state space. A full-order observer is designed for on-line states estimation. Then, feedback control system is designed for both regulation and tracking... 

    Frequency monitoring and control during power system restoration based on wide area measurement system

    , Article Mathematical Problems in Engineering ; Volume 2011 , 2011 ; 1024123X (ISSN) Nourizadeh, S ; Yari, V ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Frequency control during power system restoration has not been strongly addressed. Operators are often concerned with the offline sizing of load and generation steps, but, nowadays, the introduction of Wide Area Measurement System (WAMS) makes it possible to monitor the stability of power system online. The constraints of WAMS operation result in some changes in power system frequency control. This paper proposes a novel methodology for frequency control and monitoring during the early steps of power system restoration based on WAMS. Detailed load modeling is achieved based on the static load modeling approach. Power generators' modeling is also accomplished utilizing the single machine... 

    A nonlinear model predictive controller design for Sheppard-Taylor based PFC rectifier

    , Article IECON Proceedings (Industrial Electronics Conference), 3 November 2009 through 5 November 2009 ; 2009 , Pages 1403-1408 Abedi, M. R ; Tahami, F ; Sharif University of Technology
    Abstract
    This paper addresses a nonlinear model predictive controller design for a single-phase PFC rectifier exploiting the Sheppard-Taylor converter. After approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order, an analytic solution to the MPC is developed and a closed-form nonlinear predictive controller is introduced. The proposed nonlinear model predictive control (NMPC) derived using approximation can stabilize the original nonlinear systems if certain conditions, which can be met by properly choosing predictive times and the order for Taylor expansion, are satisfied. The main advantage of this digital control method is that unity power... 

    A simple three-phase model for distributed static series compensator (DSSC) in Newton power flow

    , Article 2009 Asia-Pacific Power and Energy Engineering Conference, APPEEC 2009, Wuhan, 27 March 2009 through 31 March 2009 ; 2009 ; 21574839 (ISSN); 9781424424870 (ISBN) Jalayer, R ; Mokhtari, H ; Wuhan University; IEEE Power and Energy Society; Chinese Society for Electrical Engineering; Scientific Research Publishing ; Sharif University of Technology
    2009
    Abstract
    Load flow problems have always been an important issue in power system analysis and require proper modeling of system components. In this regard Flexible AC Transmission System (FACTS) controllers are modern devices that their modeling specially the series type is a challenging topic. This paper describes a three-phase model for Distributed Static Series Compensator (DSSC) based on extending the Static Synchronous Series Compensator (SSSC) model in Newton power flow. To extend the SSSC model the following two differences must be considered; three completely independent phases and the existence of several modules in a DSSC system. Simulation results on the IEEE 30-bus system and a five bus... 

    Delay compensation of demand response and adaptive disturbance rejection applied to power system frequency control

    , Article IEEE Transactions on Power Systems ; Volume 35, Issue 3 , 2020 , Pages 2037-2046 Hosseini, S. A ; Toulabi, M. R ; Salehi Dobakhshari, A ; Ashouri Zadeh, A ; Ranjbar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this paper, a modified frequency control model is proposed, where the demand response (DR) control loop is added to the traditional load frequency control (LFC) model to improve the frequency regulation of the power system. One of the main obstacles for using DR in the frequency regulation is communication delay which exists in transferring data from control center to appliances. To overcome this issue, an adaptive delay compensator (ADC) is used in order to compensate the communication delay in the control loop. In this regard, a weighted combination of several vertex compensators, whose weights are updated according to the measured delay, is employed. Generating the phase lead is the... 

    Battery energy storage systems and demand response applied to power system frequency control

    , Article International Journal of Electrical Power and Energy Systems ; Volume 136 , 2022 ; 01420615 (ISSN) Hosseini, S.A ; Toulabi, M ; Ashouri Zadeh, A ; Ranjbar, A. M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, several new control strategies for employing the battery energy storage systems (BESSs) and demand response (DR) in the load frequency control (LFC) task are proposed. In this way, first, the unit commitment problem considering the BESSs’ constraints in presence of wind farms and responsive loads is solved and the best location and the optimal size of the BESSs as well as the regulation power of the responsive loads are obtained. A rule-based plan is then suggested to improve the frequency regulation considering participation of wind farms. This plan is takes into account different states associated with power system frequency response as well as BESSs’ state of charge (SOC).... 

    Optimum nonlinear model predictive controller design for flyback PFC rectifiers

    , Article ISIEA 2010 - 2010 IEEE Symposium on Industrial Electronics and Applications, 3 October 2010 through 5 October 2010 ; October , 2010 , Pages 70-75 ; 9781424476473 (ISBN) Tahami, F ; Abedi, M. R ; Rezaei, K ; IEEE Malaysia Section; IEEE Malaysia Power Electron. (PEL)/; Ind. Electron.(IE)/ Ind. Appl. (IA) Jt. Chapter ; Sharif University of Technology
    2010
    Abstract
    Single-phase ac-dc Power Factor Correction (PFC) rectifiers have attracted considerable attention in recent years due to the adoption of increasingly stringent power quality regulations. In this paper a nonlinear model predictive controller design for a single-phase Flyback PFC rectifier is presented. After approximation of the tracking error in the receding horizon by its Taylor-series expansion to a specified order, an analytic solution to the model predictive control (MPC) is developed and a closed-loop nonlinear predictive controller is introduced. The main advantage of this digital control method is that unity power factor can be achieved over wide input voltage, load current range and...