Loading...
Search for: controlled-release-drugs
0.009 seconds

    Smart pectin-based superabsorbent hydrogel as a matrix for ibuprofen as an oral non-steroidal antiinflammatory drug delivery

    , Article Starch/Staerke ; Volume 61, Issue 3-4 , 2009 , Pages 173-187 ; 00389056 (ISSN) Pourjavadi, A ; Barzegar, S ; Sharif University of Technology
    2009
    Abstract
    The purpose of this study was to produce an intelligent superabsorbent polymer (SAP) to be used as a pH sensitive matrix for the controlled delivery of drugs. Novel types of highly swelling SAPs were prepared by grafting crosslinked acrylic acid-co-acrylamide (AA-co-AAm) chains onto pectin by free-radical polymerization. The superabsorbent formation was confirmed by Fourier transform infrared spectroscopic (FT-IR) and scanning electron microscopy (SEM). The controlled release behavior of ibuprofen (IBU) from the superabsorbent polymer was investigated. SAP structural-property relationships that affect its controlled release behavior were determined. Analysis of the results indicated that it... 

    Theoretical study of diffusional release of a dispersed solute from cylindrical polymeric matrix: A novel configuration for providing zero-order release profile

    , Article Applied Mathematical Modelling ; Volume 73 , 2019 , Pages 136-145 ; 0307904X (ISSN) Khorrami Jahromi, A ; Shieh, H ; Saadatmand, M ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    In the context of controlled release drug delivery approaches, the systems providing zero-order release kinetics have special advantages. Through employing these systems, drug concentration could be maintained within the therapeutic window over release time; thus maximum effectiveness alongside minimized side effects of the drug are achieved. However, obtaining zero-order drug release is extremely challenging. One of the main obstacles is the fact that implemented devices should be designed to overcome the decreasing mass transfer driving force, especially, in polymeric systems in which diffusion mechanism is dominant. In this study, we developed a new configuration of a polymeric matrix... 

    The effect of chitosan and PEG polymers on stabilization of GF-17 structure: A molecular dynamics study

    , Article Carbohydrate Polymers ; Volume 237 , 2020 Asadzadeh, H ; Moosavi, A ; Arghavani Hadi, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We examine the interactions of chitosan and polyethylene glycol (PEG) with antimicrobial peptide GF-17 to identify a suitable carrier to improve the peptide drug delivery systems. To this end, the molecular dynamics simulations are used to determine the interactions of a typical antimicrobial peptide GF-17 with the chitosan and PEG polymers. The findings indicate the great potential of the peptide to maintain its secondary structure in the adjacent to chitosan polymers. During the interaction with chitosan polymers, the structure of the peptide has smaller fluctuations compared to the PEG polymers. Also, in the presence of both the polymers, the PEG polymers are situated closer to the... 

    Streptomycin sulfate–loaded niosomes enables increased antimicrobial and anti-biofilm activities

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 9 , 2021 ; 22964185 (ISSN) Mansouri, M ; Khayam, N ; Jamshidifar, E ; Pourseif, T ; Kianian, S ; Mirzaie, A ; Akbarzadeh, I ; Ren, Q ; Sharif University of Technology
    Frontiers Media S.A  2021
    Abstract
    One of the antibiotics used to treat infections is streptomycin sulfate that inhibits both Gram-negative and -positive bacteria. Nanoparticles are suitable carriers for the direct delivery and release of drug agents to infected locations. Niosomes are one of the new drug delivery systems that have received much attention today due to their excellent biofilm penetration property and controlled release. In this study, niosomes containing streptomycin sulfate were prepared by using the thin layer hydration method and optimized based on the size, polydispersity index (PDI), and encapsulation efficiency (EE%) characteristics. It was found that the Span 60-to-Tween 60 ratio of 1.5 and the... 

    PLA microspheres-embedded pva hydrogels prepared by gamma-irradiation and freeze-thaw methods as drug release carriers

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 62, Issue 1 , 2013 , Pages 28-33 ; 00914037 (ISSN) Behnoodfar, D ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    2013
    Abstract
    A drug delivery system based on poly (vinyl alcohol) (PVA) hydrogels containing ibuprofen-loaded poly (lactic acid) (PLA) microspheres was developed to improve the release kinetics of this model drug. Gamma-irradiation and freeze-thawing were applied to prepare poly (vinyl alcohol) hydrogels. Properties and morphology of these composite hydrogels were investigated using FTIR, DSC, and SEM. In vitro release indicated that entrapment of the microspheres into the PVA hydrogels causes a reduction in both the release rate and the initial burst effect. PLA microspheres entrapped into the PVA hydrogels showed more suitable controlled release kinetics for drug delivery  

    Chitosan-surface modified poly(lactide-co-glycolide) nanoparticles as an effective drug delivery system

    , Article 2011 18th Iranian Conference of Biomedical Engineering, ICBME 2011, 14 December 2011 through 16 December 2011 ; December , 2011 , Pages 109-114 ; 9781467310055 (ISBN) Jalali, N ; Moztarzadeh, F ; Mozafari, M ; Asgari, S ; Shokri, S ; Alhosseini, S. N ; Sharif University of Technology
    2011
    Abstract
    Since there have been many difficulties in clinical administration of anticancer drugs due to their poor solubility & targeting, development of new biodegradable Nano-carriers can provide good solutions to overcome the most of recent problems to obtain a better controlled release and targeted delivery of drugs with better efficiency and less side-effects. Acidic pH is regarded as a phenotypic characteristic of cancer tumors. Under this acidic condition, it is known that the surface charge of Chitosan-modified nano-particles become more positive. On the other hand, cancer cells are negatively charged. It is worth mentioning that by loading of anticancer drugs into this novel system, a strong... 

    The prominent role of fully-controlled surface co-modification procedure using titanium nanotubes and silk fibroin nanofibers in the performance enhancement of Ti6Al4V implants

    , Article Surface and Coatings Technology ; Volume 412 , 2021 ; 02578972 (ISSN) Goudarzi, A ; Sadrnezhaad, K ; Johari, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Modification of orthopedic implant surfaces through advanced nanoscale coating methods has made a major breakthrough in maximizing implantation success. Adjustable drug release and biocompatibility are among the most momentous features since they can significantly prevent the implantation failure. In this study, the potential of silk fibroin (SF) nanofibers fabricated via electrospinning, along with titanium oxide nanotube arrays (TNTs) formed through anodization, were exploited to produce a cyto-biocompatible, well-controlled drug delivery system. Highly-ordered TNTs were formed in an organic electrolyte solution within 2 h at the voltage of 60 V under temperature controlling (16 °C).... 

    Antibiotic-loaded chitosan–Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies

    , Article Journal of Materials Science: Materials in Medicine ; Volume 26, Issue 12 , December , 2015 ; 09574530 (ISSN) Ordikhani, F ; Dehghani, M ; Simchi, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Abstract: In this study, chitosan–Laponite nanocomposite coatings with bone regenerative potential and controlled drug-release capacity are prepared by electrophoretic deposition technique. The controlled release of a glycopeptide drug, i.e. vancomycin, is attained by the intercalation of the polymer and drug macromolecules into silicate galleries. Fourier-transform infrared spectrometry reveals electrostatic interactions between the charged structure of clay and the amine and hydroxyl groups of chitosan and vancomycin, leading to a complex positively-charged system with high electrophoretic mobility. By applying electric field the charged particles are deposited on the surface of titanium...