Loading...
Search for: conversion-mechanism
0.006 seconds

    Analysis of carrier dynamic effects in transistor lasers

    , Article Optical Engineering ; Volume 51, Issue 2 , December , 2012 ; 00913286 (ISSN) Horri, A ; Mirmoeini, S. Z ; Faez, R ; Sharif University of Technology
    2012
    Abstract
    We present an analytical model to analyze the influence of carrier dynamics on the static and dynamic responses of transistor laser (TL). Our analysis is based on solving the continuity equation and the rate equations which incorporate the virtual states as a conversion mechanism. We show that the details of the dc and small signal behavior of transistor lasers are strongly affected by the escape and capture times of carriers in quantum well (QW). Also, the effects of carrier recombination lifetime in the quantum well and base regions on the TL static and dynamic performances are investigated  

    Possibility of methane conversion into heavier hydrocarbons using nanosecond lasers

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 156 , 2016 , Pages 118-122 ; 13861425 (ISSN) Navid, H. A ; Irani, E ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Effect of nanosecond lasers on the methane dissociation is experimentally studied by using three different laser wavelengths at 248 nm, 355 nm and 532 nm. C2H2 generation is measured as a major reaction product in experiments and the energy consumptions in production of this component are measured as 5.8 MJ/mol, 3.1 MJ/mol and 69.0 MJ/mol, for 355 nm, 532 nm and 248 nm wavelengths, respectively. The mechanism of conversion and production of new stable hydrocarbons is also theoretically investigated. It is found that in theoretical calculations, the ion-molecule reactions should be included and this leads to a unique approach in proper explanation of the experimental measurements  

    Simulation of deep level traps effects in quantum well transistor laser

    , Article Journal of Computational Electronics ; Volume 12, Issue 4 , August , 2013 , Pages 812-815 ; 15698025 (ISSN) Horri, A ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, we present an analytical model to analyze the influence of deep level traps on the static and dynamic responses of transistor laser (TL). Our analyze is based on analytically solving the continuity equation and rate equations including the effect of the deep level trap (DLT), which incorporate the virtual states as a conversion mechanism. The results of simulation show that the main characteristics of laser such as threshold current, quantum efficiency, output power, and modulation bandwidth are affected by total density of traps in the active region  

    Analysis of deep level trap effects in transistor lasers

    , Article Lasers in Engineering ; Volume 25, Issue 5-6 , 2013 , Pages 313-322 ; 08981507 (ISSN) Horri, A ; Mirmoeini, S ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    In this paper we present an analytical model to analyze the influence of deep level traps on the static and dynamic responses of transistor laser (TL). Our analysis is based on analytically solving the continuity equation and rate equations including the effect of the deep level trap (DLT), which incorporates the virtual states as a conversion mechanism. The results of simulation show that the main characteristics of laser such as threshold current, quantum efficiency, output power, and modulation bandwidth are affected by total density of traps in the active region  

    Large signal analysis of double quantum well transistor laser

    , Article Optical and Quantum Electronics ; Volume 45, Issue 5 , 2013 , Pages 389-399 ; 03068919 (ISSN) Horri, A ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, we present an analytical model for the large-signal analysis of the double quantum well (DQW) transistor laser. Our model is based on solving the continuity equation and the rate equations which incorporate the virtual states as a conversion mechanism. By using the presented model, effects of barrier width on DQW transistor laser static and dynamic performances are investigated. Also the static and dynamic responses of DQW transistor lasers are compared with single quantum well ones. Simulation results are in agreement with the numerical and experimental results reported by other researchers