Loading...
Search for: converter-model
0.014 seconds

    A precise large signal model for a flyback converter in critical conduction mode

    , Article 4th IEEE International Conference on Power Electronics and Drive Systems, Denpasar, Bali, 22 October 2001 through 25 October 2001 ; Volume 2 , 2001 , Pages 886-891 Rahimi, A. M ; Alavi, M. H ; Zolghadri, M. R ; IEEE ; Sharif University of Technology
    2001
    Abstract
    Operation in critical conduction mode of flyback converters has many advantages over constant frequency PWM. In this paper, this operation is shortly examined and a precise large signal model for the converter is proposed and verified. The model shows an almost linear behavior in a large range of feedback voltage, Therefore a classical Laplace analysis can be performed. There is an excellent agreement among the results obtained from large signal SIMULINK simulation, Pspice simulation and experiment  

    A hybrid control approach for LLC resonant converter

    , Article 12th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2021, 2 February 2021 through 4 February 2021 ; 2021 ; 9780738111971 (ISBN) Barzkar, A ; Tahami, F ; Barzkar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this paper, a novel hybrid control approach is proposed to control the LLC resonant converter. Since the converter consists of both continuous variables and logical variables, it is intrinsically hybrid. Apart from that, because of fast dynamics of the converter and the fact that there is no closed form solution for discontinuous conduction modes (DCM), modeling and control of the LLC resonant converter is still a challenge. In the authors' previous work, a systematic model was proposed for the converter, the direct piecewise affine model. In this paper, an appropriate controller based on the proposed model is represented and the design procedure is discussed in details; the block diagram... 

    A novel isolated DC/DC converter for fuel cell powered load

    , Article 2009 IEEE Electrical Power and Energy Conference, EPEC 2009, 22 October 2009 through 23 October 2009 ; 2009 ; 9781424445080 (ISBN) Fathi, A. H ; Hoseinnia, S ; Roshandel, R ; Sharif University of Technology
    Abstract
    Fuel Cell (FC) is one of the promising distributed generation resources which are based on renewable energies. Clean electricity generation, high efficiency and high energy density of the fuel cells make them attractive for lots of engineers. In this paper we discuss about the operational principles of fuel cell generally. Then, a circuit model of them will be introduced. Based on the model, we designed a novel DC/DC converter for supplying the fuel cell's load and simulated the design with using Matlab. The results say that its novel converter could conveniently supply the load and its needed power curve. ©2009 IEEE  

    The direct piece-wise affine modeling of llc resonant converter

    , Article 45th Annual Conference of the IEEE Industrial Electronics Society, IECON 2019, 14 October 2019 through 17 October 2019 ; Volume 2019-October , 2019 , Pages 2062-2067 ; 9781728148786 (ISBN) Barzkar, A ; Tahami, F ; Molla Ahmadian, H ; Sharif University of Technology
    IEEE Computer Society  2019
    Abstract
    Resonant converters are hard nonlinear systems which are comprised of both continuous and discontinuous nonlinearities. Many nonlinear modeling approaches lead to a very awkward, unsystematic stability analysis and controller design. Hence, stability analysis and stabilizing controller design of the popular LLC resonant converter still remain challenging as direct consequences of the absence of a "systematic modeling". In this paper, the LLC resonant converter is modeled in the form of Piece-Wise Affine (PWA) systems and a Direct Piece-Wise Affine (DPWA) model of the DC-DC LLC resonant converter is proposed. No dynamic is omitted in the modeling approach, and accordingly, the proposed... 

    Application of neural networks and state-space averaging to DC/DC PWM converters in sliding-mode operation

    , Article IEEE/ASME Transactions on Mechatronics ; Volume 10, Issue 1 , 2005 , Pages 60-67 ; 10834435 (ISSN) Mahdavi, J ; Nasiri, M. R ; Agah, A ; Emadi, A ; Sharif University of Technology
    2005
    Abstract
    A novel output feedback neural controller is presented in this paper for the implementation of sliding-mode control of dc/dc converters. The controller, which consists of a multilayer perceptron, has been trained in order to be robust for large variations of system parameters and state variables. Fast dynamic behavior is the other main advantage of the proposed controller, which allows realization of all beneficial features of the sliding-mode control technique. Other advantages of the controller are simplicity and low cost. Computer simulations have been carried out to investigate the effectiveness of the controller in voltage regulation for a relatively complex dc/dc converter topology of... 

    Hybrid modeling of a DC-DC series resonant converter: Direct piecewise affine approach

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 59, Issue 12 , 2012 , Pages 3112-3120 ; 15498328 (ISSN) Molla Ahmadian, H ; Karimpour, A ; Pariz, N ; Tahami, F ; Sharif University of Technology
    IEEE  2012
    Abstract
    A dc-dc resonant converter has the advantage of overcoming switching losses and electromagnetic interference which are the main limitations of high frequency power converters. Nevertheless, the modeling and stability analysis of dc-dc resonant converters are considerably more complex than pulsewidth modulation counterparts. The conventional averaged linearized model of the resonant converter has limitations due to averaging and linearization. First of all, the linearized model has large modeling error in presence of large variations of reference voltage and input voltage. Furthermore, Converging area for stabilizing controllers is smaller in the averaged model. In order to overcome these... 

    A modified DTC for induction motor drive system fed by Indirect Matrix Converter using Active Learning Method

    , Article 2011 2nd Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2011, 16 February 2011 through 17 February 2011 ; February , 2011 , Pages 356-361 ; 9781612844213 (ISBN) Faraji, V ; Aghasi, M ; Khaburi, D. A ; Ghorbani, M. J ; Sharif University of Technology
    2011
    Abstract
    This paper presents a high performance Direct Torque Control (DTC) theme for the induction motor using Indirect Matrix Converter (IMC). To improve the dynamic behavior of motor, Active Learning Method (ALM) is implemented on the DTC. The ALM uses its own modeling technique called the ink drop spread (IDS) method. Functionally the IMC is very similar to the Direct Matrix Converter (DMC) but it has separate line and load bridges. In the inverter stage, the classical DTC method is employed. In the rectifier stage, in order to reduce losses caused by snubber circuit the rectifier four-step commutation method is employed. By suitably selecting switching pattern and using Active Learning Method... 

    Piecewise affine control design for power factor correction rectifiers

    , Article Journal of Power Electronics ; Volume 11, Issue 3 , 2011 , Pages 327-334 ; 15982092 (ISSN) Tahami, F ; Poshtkouhi, S ; Ahmadian, H. M ; Sharif University of Technology
    2011
    Abstract
    Single-phase power factor correction (PFC) converter circuits are non-linear systems due to the contribution of their multiplier. This non-linearity causes difficulties in analysis and design. Models that reduce the system to a linear system involve considerable approximation, and produce results that are susceptible to instability problems. In this paper a piecewise affine (PWA) system is introduced for describing the nonlinear averaged model. Then robust output feedback controllers are established in terms of the linear matrix inequality (LMI). Simulation and experiments results show the effectiveness of the proposed control method