Loading...
Search for: cooling-capacity
0.006 seconds

    Numerical Simulation and Analytical Modeling of Pulse Tube Refrigerators

    , Ph.D. Dissertation Sharif University of Technology Jafarian Dehkordi, Ali (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzade Hannani, Siamak (Supervisor)
    Abstract
    First and second law analyses of the pulse tube refrigerator cycle are performed in the present thesis. In this respect, mass, momentum and energy balance equations are employed to derive the system of governing equations. Three models have been resulted depending on the employed theoretical model to analyze the pulse tube and thermal regenerator sections. In the first model, the tube section governing equations have been descritised and finite volume technique has been employed to solve the equations. In the regenerator a linear trend was assumed for the pressure and temperature to complete the solution procedure. To improve the regenerator model, harmonic approximation technique has been... 

    A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems

    , Article Applied Thermal Engineering ; Volume 110 , 2017 , Pages 1091-1100 ; 13594311 (ISSN) Daviran, S ; Kasaeian, A ; Golzari, S ; Mahian, O ; Nasirivatan, S ; Wongwises, S ; Sharif University of Technology
    Abstract
    In this study, an automotive air conditioning system is simulated by considering HFO-1234yf (2,3,3,3-tetrafluoropropene) as the drop-in replacement of HFC-134a. The simulated air conditioning system consists of a multi-louvered fin and flat-plate type evaporator, a wobble-plate type compressor, a mini-channel parallel-flow type condenser and a thermostatic expansion valve. The thermodynamic properties of the refrigerants are extracted from the REFPROP 8.0 software, and a computer program is simulated for the thermodynamic analysis. Two different conditions have been considered in this program for the cycle analysis: for the first state, the cooling capacity is taken as constant, and for the... 

    Effect of pressure wave generator characteristics on pulse tube cryocooler performance

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 10, Issue PART C , 2009 , Pages 1649-1654 ; 9780791848715 (ISBN) Jafarian, A ; Sarikhani, N ; Saidi, M. H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2009
    Abstract
    Recent developments of superconductive industry require cryocoolers with cooling power higher than one Watt in the 70-80 K temperature range. High capacity pulse tube cryocoolers assure the cooling power required for operation of superconducting devices. The purpose of this paper is to investigate the influence of the pressure wave generator on high capacity pulse tube cryocooler performance. In this respect the hydrodynamic and thermal behavior of the cryocooler is explained by applying the mass and energy balance equations to different components of the cryocooler cycle. A linear temperature profile is assumed in the regenerator and nodal analysis technique is employed to simulate the tube... 

    Enhanced solar still condensation by using a radiative cooling system and phase change material

    , Article Desalination ; Volume 467 , 2019 , Pages 43-50 ; 00119164 (ISSN) Amarloo, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, an experimental investigation of using the radiative cooling potential in a solar still was studied. Instead of using an auxiliary radiative panel, an integrated collector was utilized for both processes of absorption of solar radiations and emission of infrared radiations for radiative cooling. At night-time, the coldness was stored in the PCM inside the PCM-condenser. While during the day, the water was evaporated in an evaporation tank, the produced vapor was directed to the PCM-condenser and the air cooled-condenser. Different condenser configurations were tested to evaluate the effect of radiative cooling on daily yield and solar still efficiency. The lower temperature of... 

    Toward the design of fault-tolerance-and peak-power-aware multi-core mixed-criticality systems

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; 2021 ; 02780070 (ISSN) Ranjbar, B ; Hosseinghorban, A ; Salehi, M ; Ejlali, A ; Kumar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Mixed-Criticality (MC) systems have recently been devised to address the requirements of real-time systems in industrial applications, where the system runs tasks with different criticality levels on a single platform. In some workloads, a highcritically task might overrun and overload the system, or a fault can occur during the execution. However, these systems must be fault-tolerant and guarantee the correct execution of all highcriticality tasks by their deadlines to avoid catastrophic consequences, in any situation. Furthermore, in these MC systems, the peak power consumption of the system may increase, especially in an overload situation and exceed the processor Thermal Design Power... 

    Energy consumption criteria and labeling program of wet cooling towers in Iran

    , Article Energy and Buildings ; Volume 43, Issue 10 , October , 2011 , Pages 2712-2717 ; 03787788 (ISSN) Saidi, M. H ; Sajadi, B ; Sayyadi, P ; Sharif University of Technology
    2011
    Abstract
    Increasing concerns about the lack of energy resources, global warming and environmental pollution have pushed the relevant organizations to develop energy saving strategies such as energy labeling programs. In this research, a new energy labeling program is developed and evaluated for the wet cooling towers in Iran. The cooling tower parameters, including its cooling capacity and the fan power consumption, are measured using an experimental setup. The experimental data are standardized to compensate the effect of the ambient wet bulb temperature on the cooling tower performance which cannot be controlled during the experiments. The results show that the cooling tower capacity and the fan... 

    Performance analysis and optimization of high capacity pulse tube refrigerator

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 257-263 ; 9780791849156 (ISBN) Ghahremani, A. R ; Roshanghalb, F ; Jahanbakhshi, R ; Saidi, M. H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Abstract
    High capacity pulse tube refrigerator (HCPTR) is a new generation of cryocoolers tailored to provide more than 250 W of cooling power at cryogenic temperatures. The most important characteristics of HCPTR when compared with other types of pulse tube refrigerators are a powerful pressure wave generator, and an accurate design. In this paper the influence of geometrical and operating parameters on the performance of a double inlet pulse tube refrigerator (DIPTR) is studied. The DIPTR is modeled applying the nodal analysis technique, using mass, momentum and energy conservation equations. The model is able to compute instantaneous flow field throughout the system and calculate cooling capacity... 

    Analysis of dehumidification effects on cooling capacity of an evaporative cooler

    , Article Journal of Thermal Science and Technology ; Volume 5, Issue 1 , 2010 , Pages 151-164 ; 18805566 (ISSN) Saidi, M. H ; Aghanajafi, C ; Mohammadian, M ; Sharif University of Technology
    2010
    Abstract
    In this study, effect of desiccant wheel, heat exchanger and cooling coil will be evaluated on decreasing the wet bulb temperature of entering air to cooling tower and decreasing the outlet cold water temperature. For this purpose, change effect of desiccant wheel parameters will be investigated on wet bulb temperature of outlet air from heat exchanger. After that, optimum parameters and minimum wet bulb temperature will be selected. Then, outlet cold water temperature will be achieved for various cooling coil surface temperature with definition of by pass factor and also by using optimum desiccant wheel parameters and entrance air wet bulb temperature to tower related to cooling coil... 

    Second law based modeling to optimum design of high capacity pulse tube refrigerators

    , Article International Journal of Refrigeration ; Volume 32, Issue 1 , 2009 , Pages 58-69 ; 01407007 (ISSN) Jafarian, A ; Saidi, M. H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    2009
    Abstract
    The optimum design of a high capacity double inlet pulse tube refrigerator based on second law of thermodynamics has been presented in this paper. Second law is applied to calculate the work loss in the regenerator and to optimize the cryocooler performance. To investigate the behavior of the pulse tube refrigerator, mass and energy balance equations are applied to several control volumes of the cryocooler cycle. A complete system of conservation equations is employed to solve the regenerator analytically. The proposed model reports the cooling capacity of 110 W at 80 K cold end temperature at frequency of 50 Hz, orifice conductance of 0.4 and double inlet coefficient of 0.6, with 2.4 kW net... 

    Online peak power and maximum temperature management in multi-core mixed-criticality embedded systems

    , Article 22nd Euromicro Conference on Digital System Design, DSD 2019, 28 August 2019 through 30 August 2019 ; 2019 , Pages 546-553 ; 9781728128610 (ISBN) Ranjbar, B ; Nguyen, T. D. A ; Ejlali, A ; Kumar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this work, we address peak power and maximum temperature in multi-core Mixed-Criticality (MC) systems. In these systems, a rise in peak power consumption may generate more heat beyond the cooling capacity. Additionally, the reliability and timeliness of MC systems may be affected due to excessive temperature. Therefore, managing peak power consumption has become imperative in multi-core MC systems. In this regard, we propose an online peak power management heuristic for multi-core MC systems. This heuristic reduces the peak power consumption of the system as much as possible during runtime by exploiting dynamic slack and Dynamic Voltage and Frequency Scaling (DVFS). Specifically, our... 

    Toward the design of fault-tolerance-aware and peak-power-aware multicore mixed-criticality systems

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; Volume 41, Issue 5 , 2022 , Pages 1509-1522 ; 02780070 (ISSN) Ranjbar, B ; Hosseinghorban, A ; Salehi, M ; Ejlali, A ; Kumar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Mixed-criticality (MC) systems have recently been devised to address the requirements of real-time systems in industrial applications, where the system runs tasks with different criticality levels on a single platform. In some workloads, a high-critically task might overrun and overload the system, or a fault can occur during the execution. However, these systems must be fault tolerant and guarantee the correct execution of all high-criticality (HC) tasks by their deadlines to avoid catastrophic consequences, in any situation. Furthermore, in these MC systems, the peak-power consumption of the system may increase, especially in an overload situation and exceed the processor thermal design...