Loading...
Search for: copper-oxide-nanoparticles
0.008 seconds

    Electrodeposition of Copper Oxide Nanoparticles on Precasted Carbon Nanoparticles Film for Electrochemical Investigation of anti-HIV Drug Nevirapine

    , Article Electroanalysis ; Volume 27, Issue 8 , June , 2015 , Pages 1989-1997 ; 10400397 (ISSN) Shahrokhian, S ; Kohansal, R ; Ghalkhani, M ; Amini, M. K ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    This work describes the development of a novel electrochemical sensor based on electrodeposition of copper oxide nanoparticles onto carbon nanoparticle (CNP) film modified electrode for the analysis of the anti-HIV drug, nevirapine (NEV). The electrochemical experiments were performed using linear sweep and cyclic voltammetry. Atomic force microscopy was applied for surface characterization of the deposited modifier film (CuO-CNP) on glassy carbon electrode (GCE). No oxidation peak was observed for NEV on the bare GCE, but both CNP-GCE and CuO-CNP-GCE showed a distinctive anodic response towards NEV with considerable enhancement (276-fold and 350-fold, respectively) compared to CuO-GCE. The... 

    Application of Metallic Nanoparticles in Treatment of Wastewater Containing Dyestuffs

    , M.Sc. Thesis Sharif University of Technology Hosseini, Reza (Author) ; Shaygan, Jalalaldin (Supervisor)
    Abstract
    Textile industrial wastewaters are one of the most important sources of environmental contaminants. In the recent years, use of advanced oxidation processes, by producing highly active and reactive components such as hydroxyl radicals has been proposed. The aim of this research is oxidative degradation of methylene blue dye using Cu-nanoparticles immobilized on a polymer support with H2O2 as an oxidant reagent.In general, oxidative degradation of methylene blue with hydrogen proxide in the presence of immobilized CuO nanoparticles on a polymer support as the catalyst was studied. We used polyamidoamine (PAMAM) dendrimer as the polymer support for nanoparticles. fourth generation of PAMAM was... 

    Green Chemistry of Copper Oxide Nanoparticles from Salvia Hispanica: Potential Biological and Catalyst Activity in Click Chemistry

    , M.Sc. Thesis Sharif University of Technology Ghadiri Ghehi, Amir Mohammad (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    The present work was aimed to account a green and eco-friendly synthesis of copper oxide nanoparticles using Salvia hispanica extracts for the first time.The synthesized copper oxide nanoparticles were fully characterized using FT-IR, XRD, FESEM, EDX, TEM and UV-Vis spectroscopy techniques. The average particle size of copper oxide nanoparticles is around 35 nm and shape of nanoparticles are spherical. Biological activity of the synthesized nanoparticles were evaluated in terms of antibacterial assessments against Staphylococcus aureus and Escherichia coli. In the following, the potential antibacterial activity against gram positive (S.aureus) and gram negative (E.coli) bacteria’s were... 

    H2 Production Via Cu2O Nanostructured on TNA in Water Splitting Reaction under Visible Photo-irradiation

    , M.Sc. Thesis Sharif University of Technology Mahmoudi Ali Bygi, Behzad (Author) ; Moshfegh, Alireza (Supervisor) ; Saboohi, Yadollah (Co-Advisor)
    Abstract
    In this research, initially, thin film of TiO2 nanotube arrays (TNA) was deposited on Titanium foil (Ti), using anodization technique under an optimized applied voltage of 60 V, for 200 minutes. Highly smooth and ordered TNA formed by effective two-step anodization method. The TNA synthesized by this procedure, showed a better surface smoothness and tube order as compared with the TNA prepared in one-step anodization process. The electrolyte which was utilized for the anodization process, contained 90% of Ethylene Glycol (EG) in volume, 10% de-ionized water (DI) in volume, 0.1M Ammonium Fluoride (NH4F), and 0.5 ml Phosphoric Acid (H3PO4) 1M in order to adjust the pH about 5.6. Moreover, the... 

    A simple granulation technique for preparing high-porosity nano copper oxide(II) catalyst beads

    , Article Particuology ; Volume 9, Issue 5 , 2011 , Pages 480-485 ; 16742001 (ISSN) Ahmadi, S. J ; Outokesh, M ; Hosseinpour, M ; Mousavand, T ; Sharif University of Technology
    Abstract
    A simple and efficient method was developed for fabricating spherical granules of CuO catalyst via a three-step procedure. In the first step, copper oxide nanoparticles were synthesized by hydrothermal decomposition of copper nitrate solution under supercritical condition. Then, they were immobilized in the polymeric matrix of calcium alginate, and followed by high-temperature calcination in an air stream as the third step, in which carbonaceous materials were oxidized, to result in a pebble-type catalyst of high porosity. The produced CuO nanoparticles were characterized by transmission electron microscopy (TEM) that revealed an average size of 5 nm, X-ray diffractometry (XRD), and thermo... 

    Production of granulated-copper oxide nanoparticles for catalytic application

    , Article Journal of Materials Research ; Volume 25, Issue 10 , 2010 , Pages 2025-2034 ; 08842914 (ISSN) Hosseinpour, M ; Ahmadi, S. J ; Mousavand, T ; Outokesh, M ; Sharif University of Technology
    2010
    Abstract
    Ultra fine CuO nanoparticles In the range of 2 ± 0.2 nm were synthesized by the supercritical hiydrotliermal method in a batch reactor. Itwas demonstrated that elevating the pH of the Cu2+ precursor solution to around 6 (neutral condition) not only does not lead to excessive agglomeration of the particles, but also reduces particle size and in general promotes their nanoscale characteristics. Prepared nanoparticles were immobilized in the biopolymcric matrix of barium alginate and calcined at different temperatures resulting in micro spherical granules of high porosity and elevated mechanical strength. The fabricated samples were characterized using x-ray diffractometry (XRD), transmission... 

    Numerical analysis of heat conduction treated with highly conductive copper oxide nanoparticles In porous media

    , Article Special Topics and Reviews in Porous Media ; Volume 7, Issue 2 , 2016 , Pages 149-160 ; 21514798 (ISSN) Rokhforouz, M. R ; Rabbani, A ; Ayatollahi, S ; Taghikhani, V ; Sharif University of Technology
    Begell House Inc  2016
    Abstract
    In this paper, the effect of highly conductive copper oxide nanoparticles on the effective thermal conductivity (ETC) of rock samples was mathematically investigated. To solve the governing conservation equations for the ETC a commercial finite element package (COMSOL Multiphysics) was used. It should be stressed that the single-phase approach was employed to mathematically model the effect of nanofluid on the heat transfer improvement. The computational geometry of the rock samples was obtained by analyzing the microscopic images of the limestone rock samples. The results obtained from the mathematical modeling of the rock samples showed that the conductive heat transfer through porous... 

    Biosynthesis of copper oxide nanoparticles with potential biomedical applications

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3983-3999 Rabiee, N ; Bagherzadeh, M ; Kiani, M ; Ghadiri, A. M ; Etessamifar, F ; Jaberizadeh, A. H ; Shakeri, A ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Introduction: In recent years, the use of cost-effective, multifunctional, environmentally friendly and simple prepared nanomaterials/nanoparticles have been emerged considerably. In this manner, different synthesizing methods were reported and optimized, but there is still lack of a comprehensive method with multifunctional properties. Materials and Methods: In this study, we aim to synthesis the copper oxide nanoparticles using Achillea millefolium leaf extracts for the first time. Catalytic activity was investigated by in situ azide alkyne cycloaddition click and also A3 coupling reaction, and optimized in terms of temperature, solvent, and time of the reaction. Furthermore, the... 

    Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts

    , Article Surface and Coatings Technology ; Volume 205, Issue 1 , September , 2010 , Pages 219-223 ; 02578972 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2010
    Abstract
    CuO nanoparticles with average diameter of about 20. nm were accumulated on surface of sol-gel silica thin films heat treated at 300 °C in air. Heat treatment of the CuO nanoparticles at 600 °C in a reducing environment resulted in effective reduction of the nanoparticles and penetration of them into the film. While the thin films heat treated at 300 °C exhibited a strong antibacterial activity against Escherichia coli bacteria, the reducing process decreased their antibacterial activity. However, by definition of normalized antibacterial activity (antibacterial activity/surface concentration of coppers) it was found that Cu nanoparticles were more toxic to the bacteria than the CuO... 

    Direct production of carbon nanotubes decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

    , Article Journal of Nanoparticle Research ; Volume 13, Issue 10 , October , 2011 , Pages 4681-4689 ; 13880764 (ISSN) Nayeb Sadeghi, S ; Shafiekhani, A ; Vesaghi, M. A ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes (CNTs) decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 45 °C using the corrosive effect of H2SO4 which was added to solution. These nanoparticles provide the nucleation sites for CNT growth avoiding the need for a buffer layer. The surface morphology of the Ni catalyst films and CNT growth over this catalyst was studied by scanning electron microscopy (SEM). High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O2 at... 

    Synthesis and electrochromic study of sol-gel cuprous oxide nanoparticles accumulated on silica thin film

    , Article Thin Solid Films ; Volume 517, Issue 24 , 2009 , Pages 6700-6706 ; 00406090 (ISSN) Akhavan, O ; Tohidi, H ; Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    In this study, electrochromic properties of cuprous oxide nanoparticles, self-accumulated on the surface of a sol-gel silica thin film, have been investigated by using UV-visible spectrophotometry in a lithium-based electrolyte cell. The cuprous oxide nanoparticles showed a reversible electrochromic process with a thin film transmission reduction of about 50% in a narrow wavelength range of 400-500 nm, as compared to the bleached state of the film. Using optical transmission measurement, we have found that the band gap energy of the films reduced from 2.7 eV for Cu2O to 1.3 eV for CuO by increasing the annealing temperature from 220 to 300 °C in an N2 environment for 1 h. Study of the band... 

    Effect of graphene oxide nanosheets on visible light-assisted antibacterial activity of vertically-aligned copper oxide nanowire arrays

    , Article Journal of Colloid and Interface Science ; Volume 521 , 2018 , Pages 119-131 ; 00219797 (ISSN) Kiani, F ; Ashari Astani, N ; Rahighi, R ; Tayyebi, A ; Tayebi, M ; Khezri, J ; Hashemi, E ; Rothlisberger, U ; Simchi, A ; Sharif University of Technology
    Academic Press Inc  2018
    Abstract
    In the present work, the effect of graphene oxide (GO) nanosheets on the antibacterial activity of CuO nanowire arrays under visible light irradiation is shown. A combined thermal oxidation/electrophoretic deposition technique was employed to prepare three-dimensional networks of graphene oxide nanosheets hybridized with vertically aligned CuO nanowires. With the help of standard antibacterial assays and X-ray photoelectron spectroscopy, it is shown that the light-activated antibacterial response of the hybrid material against gram-negative Escherichia coli is significantly improved as the oxide functional groups of the GO nanosheets are reduced. In order to explore the physicochemical...