Loading...
Search for: corrosion-behaviour
0.006 seconds

    Corrosion behaviour of Ni-Co alloy coatings at Kish Island (marine) atmosphere

    , Article Bulletin of Materials Science ; Vol. 37, issue. 3 , May , 2014 , p. 713-719 Sharifi, K ; Ghorbani, M ; Sharif University of Technology
    Abstract
    In this study, the corrosion behaviour of Ni-Co alloys with low Co content, electroplated on steel substrate in sulphate bath, was investigated. The morphology of coatings was studied by optical and SEM microscopy. The corrosion products were analyzed using EDX. The results showed that Ni-1%Co coatings had a better corrosion resistance 0.30, 0.92 and 3.75 mpy for atmospheric, salt spray and polarization tests, respectively. These are 0.41, 1.20 and 5.40 mpy for pure nickel coatings that indicate the least corrosion resistance. Surface analysis revealed the presence of oxides, sulphides and chlorides in corrosion products  

    Enhanced corrosion resistance of porous NiTi with plasma sprayed alumina coating

    , Article Corrosion Engineering Science and Technology ; Volume 50, Issue 8 , 2015 , Pages 595-600 ; 1478422X (ISSN) Hosseini, S. A ; Akbarinia, S ; Mohammadyani, D ; Sadrnezhaad, S. K ; Sharif University of Technology
    Maney Publishing  2015
    Abstract
    In this study, corrosion behaviour of porous NiTi modified by plasma sprayed alumina coating has been investigated. Scanning electron microscopy and X-ray diffraction techniques were applied for the morphology and microstructure characterisation, while linear sweep voltammetry and electrochemical impedance spectroscopy were used for investigation of corrosion behaviour of coated and uncoated NiTi specimens. Induced couple plasma was conducted to measure ion release of the specimens in simulated body fluid at 37°C. The plasma sprayed Al2O3 coating on the porous NiTi improved the surface characteristics for biomedical applications. The alumina coating significantly hampered Ni ion release from... 

    Corrosion protection of 1050 aluminium alloy using a smart self-cleaning TiO2-CNT coating

    , Article Surface and Coatings Technology ; Volume 275 , 2015 , Pages 224-231 ; 02578972 (ISSN) Shadravan, A ; Sadeghian, Z ; Nemati, A ; Mohammadi, S. P ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Inclusion of carbon nanotubes (CNTs) into the titanium dioxide coating on 1050 aluminium alloy was studied with the aim at enhancing the corrosion resistance of the surface. Composite coatings with various contents of CNTs were prepared via the sol-gel method and dip coating. XRD and FTIR phase and structural evaluations showed the presence of anatase phase in all thin films. Concomitant enhanced corrosion behaviour in the presence of CNTs was resulted from polarization potentiodynamic test. Band-gap evaluation was performed using absorbance spectra of coatings and showed considerable decrease of band-gap energy in the presence of CNTs. Photocatalytic properties and hydrophilicity of... 

    Electrodeposition of Ni-WndashB nanocomposite from tartrate electrolyte as alternative to chromium plating

    , Article Surface Engineering ; Volume 25, Issue 5 , 2009 , Pages 382-388 ; 02670844 (ISSN) Hosseini, M. G ; Abdolmaleki, M ; Seyed Sadjadi, S. A ; Raghibi Boroujeni, M ; Arshadi, M. R ; Khoshvaght, H ; Sharif University of Technology
    2009
    Abstract
    The effect of the bath chemistry and operating conditions on the chemical composition, microstructure and properties of NiWmdashB alloys deposited from tartrate baths on working electrode was studied for the first time by the pulsed current method. The investigations included the measurement of the current efficiencies and determination of the tungsten content in the electrodeposits. UV spectrometry was used for characterisation of complex formation. The grain size of deposits was determined by XRD. Also, the morphology of the deposits was studied by SEM. Amorphous NimdashWB alloys were successfully obtained by electrodeposition from the tartrate bath. The corrosion behaviour of NiWmdashB... 

    Optimization of nano HA-SiC coating on AISI 316L medical grade stainless steel via electrophoretic deposition

    , Article Materials Letters ; Volume 285 , 2021 ; 0167577X (ISSN) Hosseini, M. R ; Ahangari, M ; Johar, M. H ; Allahkaram, S. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatible nanostructured coating plays an important role in enhancement of osseointegration ability of metallic implants. This study sets out to obtain optimized SiC concentration in Hydroxyapatite (HA) coating on AISI 316L stainless steel alloy through electrophoretic deposition method. Effect of SiC concentrations (1, 2, and 3%.wt) on the morphology, corrosion behaviour, and mechanical properties of the HA coating is investigated. Results show that SiC could obstruct the formation and growth of micro cracks in the HA coating where HA-3%SiC is considered as a crack free coating. Electrochemical tests reveal that SiC has improved the corrosion resistance of HA coating, and HA-3%SiC... 

    Synergistic effects of MWCNT and high-pressure torsion-induced grain refinement on microhardness, tribological properties, and corrosion behavior of Cu and Cu/MWCNT nanocomposites

    , Article Metals and Materials International ; 2021 ; 15989623 (ISSN) Akbarpour, M. R ; Mirabad, H. M ; Golenji, R. B ; Kakaei, K ; Kim, H. S ; Sharif University of Technology
    Korean Institute of Metals and Materials  2021
    Abstract
    In this study, ultra-fine grained Cu and Cu + carbon nanotube (CNT) nanocomposites were prepared through a processes combining flake powder metallurgy, hot pressing, and high-pressure torsion (HPT). The effects of grain refinement and CNT reinforcement on the microstructure, hardness, wear resistance, and corrosion behavior of the newly developed nanocomposites were investigated. The results indicated that the HPT process decreased the grain size of Cu and Cu + CNT by 67.7% and 68.1%, respectively, and increased their microhardness by 151% and 132%. The addition of CNTs substantially improved the tribological behavior of Cu by generating a mechanically mixed carbon- and oxide-rich layer.... 

    Synergistic effects of MWCNTs and high-pressure torsion-induced grain refinement on microhardness, tribological properties, and corrosion behavior of Cu and Cu/MWCNT nanocomposites

    , Article Metals and Materials International ; 2021 ; 15989623 (ISSN) Akbarpour, M. R ; Mirabad, H. M ; Golenji, R. B ; Kakaei, K ; Kim, H. S ; Sharif University of Technology
    Korean Institute of Metals and Materials  2021
    Abstract
    In this study, ultra-fine grained Cu and Cu + carbon nanotube (CNT) nanocomposites were prepared through a processes combining flake powder metallurgy, hot pressing, and high-pressure torsion (HPT). The effects of grain refinement and CNT reinforcement on the microstructure, hardness, wear resistance, and corrosion behavior of the newly developed nanocomposites were investigated. The results indicated that the HPT process decreased the grain size of Cu and Cu + CNT by 67.7% and 68.1%, respectively, and increased their microhardness by 151% and 132%. The addition of CNTs substantially improved the tribological behavior of Cu by generating a mechanically mixed carbon- and oxide-rich layer.... 

    Synergistic effects of MWCNTs and high-pressure torsion-induced grain refinement on microhardness, tribological properties, and corrosion behavior of Cu and Cu/MWCNT nanocomposites

    , Article Metals and Materials International ; Volume 28, Issue 9 , 2022 , Pages 2197-2215 ; 15989623 (ISSN) Akbarpour, M. R ; Mirabad, H. M ; Golenji, R. B ; Kakaei, K ; Kim, H. S ; Sharif University of Technology
    Korean Institute of Metals and Materials  2022
    Abstract
    In this study, ultra-fine grained Cu and Cu + carbon nanotube (CNT) nanocomposites were prepared through a processes combining flake powder metallurgy, hot pressing, and high-pressure torsion (HPT). The effects of grain refinement and CNT reinforcement on the microstructure, hardness, wear resistance, and corrosion behavior of the newly developed nanocomposites were investigated. The results indicated that the HPT process decreased the grain size of Cu and Cu + CNT by 67.7% and 68.1%, respectively, and increased their microhardness by 151% and 132%. The addition of CNTs substantially improved the tribological behavior of Cu by generating a mechanically mixed carbon- and oxide-rich layer.... 

    Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys

    , Article Journal of Magnesium and Alloys ; Volume 10, Issue 7 , 2022 , Pages 1737-1785 ; 22139567 (ISSN) Mohammadi Zerankeshi, M ; Alizadeh, R ; Gerashi, E ; Asadollahi, M ; Langdon, T. G ; Sharif University of Technology
    National Engg. Reaserch Center for Magnesium Alloys  2022
    Abstract
    Biodegradable magnesium (Mg) alloys exhibit great potential for use as temporary structures in tissue engineering applications. Such degradable implants require no secondary surgery for their removal. In addition, their comparable mechanical properties with the human bone, together with excellent biocompatibility, make them a suitable candidate for fracture treatments. Nevertheless, some challenges remain. Fast degradation of the Mg-based alloys in physiological environments leads to a loss of the mechanical support that is needed for complete tissue healing and also to the accumulation of hydrogen gas bubbles at the interface of the implant and tissue. Among different methods used to... 

    Improved corrosion resistance and mechanical properties of biodegradable Mg-4Zn-xSr alloys: effects of heat treatment, Sr additions, and multi-directional forging

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 3363-3380 ; 22387854 (ISSN) Gerashi, E ; Alizadeh, R ; Mahmudi, R ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    The effects of Sr additions, heat treatment (T4 and T6), and multi-directional forging on the microstructural evolution, mechanical properties and biodegradability of Mg-4Zn-xSr alloys were investigated. Corrosion behavior of the alloys was evaluated by the polarization and hydrogen evolution tests. Shear punch and hardness tests were employed to determine the mechanical properties. It was found that mechanical properties and corrosion resistance of the as-cast Mg-4Zn alloy increased by 0.3 wt% Sr addition. However, further increasing the Sr content not only did not improve the mechanical strength, but also had detrimental effects on the corrosion resistance, due to the increased size and... 

    Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: A review

    , Article Journal of Magnesium and Alloys ; Volume 10, Issue 2 , 2022 , Pages 313-325 ; 22139567 (ISSN) Gerashi, E ; Alizadeh, R ; Langdon, T. G ; Sharif University of Technology
    National Engg. Reaserch Center for Magnesium Alloys  2022
    Abstract
    Magnesium and its alloys have gained significant popularity due to their light weight and their potential for use as bioresorbable materials. However, their application is limited in practice due to their relatively poor corrosion resistance. Several methods are available for improving the corrosion resistance of Mg alloys for bio-applications such as using different coatings, alloying, and modifying the microstructural parameters such as the grain size and the crystallographic texture. This review provides a comprehensive summary of the effects of crystallographic texture and twinning, as one of the most important deformation mechanisms of Mg and Mg alloys, on the corrosion behavior.... 

    Microstructural evolution and Bio-corrosion behavior of a CP-Ti processed by multi-pass of severe plastic deformation

    , Article JOM ; Volume 74, Issue 12 , 2022 , Pages 4621-4631 ; 10474838 (ISSN) Vakili Azghandi, M ; Famil Hatami, M ; Hoseini Sabzevari, S. A ; Moosavi Nezhad, S. M ; Mandanipour, V ; Szpunar, J. A ; Sharif University of Technology
    Springer  2022
    Abstract
    The microstructure evaluation and phase transformation of multi-pass friction stir-processed (FSP) commercially pure titanium were investigated using optical microscopy, scanning electron microscopy equipped with a backscatter detector, and electron backscatter diffractometer. The microstructure characterization shows that the grain refinement mechanism changed with the increasing number of passes. The equiaxed α grains in the untreated sample changed to lath-shaped grains surrounded by serrated grain boundaries, and produced Widmanstätten morphology during the cooling cycle of FSP. The higher micro-hardness values and bio-corrosion resistances of the FSP-treated samples are due to their... 

    MgO-incorporated carbon nanotubes-reinforced Mg-based composites to improve mechanical, corrosion, and biological properties targeting biomedical applications

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 976-990 ; 22387854 (ISSN) Abazari, S ; Shamsipur, A ; Bakhsheshi-Rad, H. R ; Keshavarz, M ; Kehtari, M ; Ramakrishna, S ; Berto, F ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    In this study, magnesium oxide (MgO) nanoparticles are incorporated on carbon nanotubes (CNTs) to reinforce Mg-3Zn-1Mn alloy (ZM31 alloy) by semi-powder metallurgy, followed by hot extrusion, with the purpose of improving the mechanical and biological properties of Mg-based alloy. The microstructural analysis of the nanocomposites indicated a reduction in grain size of Mg alloy with the incorporation of CNTs with a maximum reduction of 61% (ZM31/CNTs), with further reduction in grain size (68%) detected when MgO integrated CNTs composites (ZM31/MgO-CNTs). The compression characteristics of the composites indicate an increase in ultimate compressive strength of 36% and 44%, respectively, with...