Loading...
Search for: coupled-partial-differential-equations
0.007 seconds

    Vibration of a microbeam under ultra-short-pulsed laser excitation considering momentum and heating effect

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 195-200 ; 9780791844472 (ISBN) Pasharavesh, A ; Vaghasloo, Y. A ; Ahmadian, M. T ; Moheimani, R ; Sharif University of Technology
    2010
    Abstract
    In this study, vibration of a microbeam excited by an ultrashort- pulsed laser considering the momentum and heating effect of the laser beam is investigated. When the laser impacts the microbeam, portion of the photons is absorbed by the beam and their energy will be transformed into heat while the others are reflected. The momentum change of the absorbed and reflected laser photons is considered and modeled as a distributed force on the beam. The absorbed thermal energy yields non-uniform thermal stress causing the beam to vibrate. According to short duration of laser pulse, the non-Fourier conduction equation which takes into account the finite propagation speed of thermal energy, is... 

    Nonlinear dynamic analysis of an axially loaded rotating Timoshenko beam with extensional condition included subjected to general type of force moving along the beam length

    , Article JVC/Journal of Vibration and Control ; Volume 19, Issue 16 , 2013 , Pages 2448-2458 ; 10775463 (ISSN) Mamandi, A ; Kargarnovin, M. H ; Sharif University of Technology
    2013
    Abstract
    In this paper the non-planar nonlinear dynamic responses of an axially loaded rotating Timoshenko beam subjected to a three-directional force traveling with a constant velocity is studied. On deriving the nonlinear coupled partial differential equations (PDEs) of motion the stretching effect of the beam's neutral axis due to the pinned-pinned ends' condition in conjunction with the von Karman strain-displacement relation are considered. The beam's nonlinear governing coupled PDEs of motion for the bending rotations of warped cross-section, longitudinal and lateral displacements are derived using Hamilton's principle. To obtain the dynamic responses of the beam, derived PDEs of motion are... 

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    An analytical solution for dynamic behavior of thick doubly curved functionally graded smart panels

    , Article Composite Structures ; Vol. 107, issue , January , 2014 , p. 88-102 Sayyaadi, H ; Askari Farsangi, M. A ; Sharif University of Technology
    Abstract
    In this paper, an analytical solution is presented for free vibration and dynamic behavior of doubly curved laminated shell consisting of a functionally graded core layer and surface attached functionally graded piezoelectric layers. Shell through-thickness kinematics is based on higher order shear deformation theory of shells, whereas a quadratic variation is assumed for electric potential. Using Hamilton's principle and Maxwell's equation, the governing equations of motion under mechanical loads are derived as seven highly coupled partial differential equations. Implementing Laplace transformation, doing few mathematical operations and using Laplace inverse method, time dependencies of... 

    Nonlinear dynamic analysis of a rectangular plate subjected to accelerated/decelerated moving load

    , Article Journal of Theoretical and Applied Mechanics ; Volume 53, Issue 1 , 2015 , Pages 151-166 ; 14292955 (ISSN) Mamandi, A ; Mohsenzadeh, R ; Kargarnovin, M. H ; Sharif University of Technology
    Polish Society of Theoretical and Allied Mechanics  2015
    Abstract
    In this paper, nonlinear dynamical behavior of a rectangular plate traveled by a moving mass as well as an equivalent concentrated force with non-constant velocity is studied. The nonlinear governing coupled partial differential equations (PDEs) of motion are derived by energy method using Hamilton's principle based on the large deflection theory in conjuncture with the von-Karman strain-displacement relations. Then Galerkin's method is used to transform the equations of motion into a set of three coupled nonlinear ordinary differential equations (ODEs) which then is solved in a semi-analytical way to get the dynamical response of the plate. Also, by using the Finite Element Method (FEM)... 

    Free vibration of a functionally graded annular sector plate integrated with piezoelectric layers

    , Article Applied Mathematical Modelling ; Volume 79 , 2020 , Pages 341-361 Shahdadi, A ; Rahnama, H ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    Based on the first order shear deformation theory, free vibration behavior of functionally graded (FG) annular sector plates integrated with piezoelectric layers is investigated. The distribution of electric potential along the thickness direction of piezoelectric layers which is assumed to be a combination of linear and sinusoidal functions, satisfies both open and closed circuit electrical boundary conditions. Through a reformulation of governing equations and harmonic motion assumption, a novel decoupling method is suggested to transform the six second order coupled partial differential equations of motion into two eighth order and fourth order equations. A Fourier series method is then... 

    Three dimensional analysis of laminated cylindrical panels with piezoelectric layers

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 19, Issue 1 , 2006 , Pages 61-72 ; 1728-144X (ISSN) Nosier, A ; Ruhi, M ; Sharif University of Technology
    Materials and Energy Research Center  2006
    Abstract
    A semi-analytical solution is presented for three dimensional elastic analysis of finitelylong, simply supported, orthotropic, laminated cylindrical panels with piezoelectric layers subjected to outer pressure and electrostatic excitation. Both the direct and inverse piezoelectric effects are investigated. The solution is obtained through reducing the highly coupled partial differential equations (PDE's) of equilibrium to ordinary differential equations (ODE's) with variable coefficients by means of trigonometric function expansion in longitudinal and circumferential directions. The resulting ODE's are solved by dividing the radial domain into some finite subdivisions and imposing necessary... 

    Nonlinear dynamic analysis of an inclined Timoshenko beam subjected to a moving mass/force with beam's weight included

    , Article Shock and Vibration ; Volume 18, Issue 6 , 2011 , Pages 875-891 ; 10709622 (ISSN) Mamandi, A ; Kargarnovin, M. H ; Sharif University of Technology
    2011
    Abstract
    In this study, the nonlinear vibrations analysis of an inclined pinned-pinned self-weight Timoshenko beam made of linear, homogenous and isotropic material with a constant cross section and finite length subjected to a traveling mass/force with constant velocity is investigated. The nonlinear coupled partial differential equations of motion for the rotation of warped cross section, longitudinal and transverse displacements are derived using the Hamilton's principle. These nonlinear coupled PDEs are solved by applying the Galerkin's method to obtain dynamic responses of the beam. The dynamic magnification factor and normalized time histories of mid-point of the beam are obtained for various... 

    Panel flutter analysis of general laminated composite plates

    , Article Composite Structures ; Volume 92, Issue 12 , November , 2010 , Pages 2906-2915 ; 02638223 (ISSN) Kouchakzadeh, M. A ; Rasekh, M ; Haddadpour, H ; Sharif University of Technology
    2010
    Abstract
    The problem of nonlinear aeroelasticity of a general laminated composite plate in supersonic air flow is examined. The classical plate theory along with the von-Karman nonlinear strains is used for structural modeling, and linear piston theory is used for aerodynamic modeling. The coupled partial differential equations of motion are derived by use of Hamilton's principle and Galerkin's method is used to reduce the governing equations to a system of nonlinear ordinary differential equations in time, which are then solved by a direct numerical integration method. Effects of in-plane force, static pressure differential, fiber orientation and aerodynamic damping on the nonlinear aeroelastic...