Loading...
Search for: coupled-simulated-annealing
0.004 seconds

    Modeling the permeability of heterogeneous oil reservoirs using a robust method

    , Article Geosciences Journal ; Volume 20, Issue 2 , 2016 , Pages 259-271 ; 12264806 (ISSN) Kamari, A ; Moeini, F ; Shamsoddini Moghadam, M. J ; Hosseini, S. A ; Mohammadi, A. H ; Hemmati Sarapardeh, A ; Sharif University of Technology
    Korean Association of Geoscience Societies  2016
    Abstract
    Permeability as a fundamental reservoir property plays a key role in reserve estimation, numerical reservoir simulation, reservoir engineering calculations, drilling planning, and mapping reservoir quality. In heterogeneous reservoir, due to complexity, natural heterogeneity, non-uniformity, and non-linearity in parameters, prediction of permeability is not straightforward. To ease this problem, a novel mathematical robust model has been proposed to predict the permeability in heterogeneous carbonate reservoirs. To this end, a fairly new soft computing method, namely least square support vector machine (LSSVM) modeling optimized with coupled simulated annealing (CSA) optimization technique... 

    Prediction of the aqueous solubility of BaSO4 using pitzer ion interaction model and LSSVM algorithm

    , Article Fluid Phase Equilibria ; Vol. 374, issue , July , 2014 , p. 48-62 ; ISSN: 03783812 Safari, H ; Shokrollahi, A ; Jamialahmadi, M ; Ghazanfari, M. H ; Bahadori, A ; Zendehboudi, S ; Sharif University of Technology
    Abstract
    Deposition of barium sulfate (or BaSO4) has already been recognized as a devastating problem facing process industries and oilfield operations, mainly owing to its low solubility in aqueous solutions. Predicting and also preventing the overall damage caused by BaSO4 precipitation requires a profound knowledge of its solubility under different thermodynamic conditions. The main aim of this study is to develop a solubility prediction model based on a hybrid of least squares support vector nachines (LSSVM) and coupled simulated annealing (CSA) aiming to predict the solubility of barium sulfate over wide ranges of temperature, pressure and ionic compositions. Results indicate that predictions of... 

    Toward a predictive model for predicting viscosity of natural and hydrocarbon gases

    , Article Journal of Natural Gas Science and Engineering ; Volume 20 , September , 2014 , Pages 147-154 ; ISSN: 18755100 Yousefi, S. H ; Azamifard, A ; Hosseini, S. A ; Shamsoddini, M. J ; Alizadeh, N ; Sharif University of Technology
    Abstract
    Accurate knowledge of pure hydrocarbon and natural gas viscosity is essential for reliable reservoir characterization and simulation as well as economic design of natural gas processing and transport units. The most trustable sources of pure hydrocarbon and natural gas viscosity values are laboratory experiments. When there is no available experimental data for the required composition, pressure, and temperature conditions, the use of predictive methods becomes important. In this communication, a novel approach was proposed to develop for prediction of viscosity of pure hydrocarbons as well as gas mixtures containing heavy hydrocarbon components and impurities such as carbon dioxide,... 

    Assessment of asphaltene deposition due to titration technique

    , Article Fluid Phase Equilibria ; Volume 339 , 2013 , Pages 72-80 ; 03783812 (ISSN) Chamkalani, A ; Amani, M ; Kiani, M. A ; Chamkalani, R ; Sharif University of Technology
    2013
    Abstract
    Due to problems followed by asphaltene deposition, which cause many remedial processes and costs, it seemed necessary to develop equations for determining asphaltene precipitation quantitatively or qualitatively. In this study a new scaling equation as a function of temperature, molecular weight, and dilution ratio (solvent) has been developed. This equation can be used to determine the weight percent of precipitated asphaltene in the presence of different precipitants (solvents). The proposed methodology utilizes least square support vector machines/regression (LSSVM/LSSVR) to perform nonlinear modeling. This paper proposes a new feature selection mechanism based on coupled simulated... 

    Prediction of sour gas compressibility factor using an intelligent approach

    , Article Fuel Processing Technology ; Volume 116 , 2013 , Pages 209-216 ; 03783820 (ISSN) Kamari, A ; Hemmati Sarapardeh, A ; Mirabbasi, S. M ; Nikookar, M ; Mohammadi, A. H ; Sharif University of Technology
    2013
    Abstract
    Compressibility factor (z-factor) values of natural gasses are essential in most petroleum and chemical engineering calculations. The most common sources of z-factor values are laboratory experiments, empirical correlations and equations of state methods. Necessity arises when there is no available experimental data for the required composition, pressure and temperature conditions. Introduced here is a technique to predict z-factor values of natural gasses, sour reservoir gasses and pure substances. In this communication, a novel mathematical-based approach was proposed to develop reliable model for prediction of compressibility factor of sour and natural gas. A robust soft computing... 

    Implementation of SVM framework to estimate PVT properties of reservoir oil

    , Article Fluid Phase Equilibria ; Volume 346 , May , 2013 , Pages 25-32 ; 03783812 (ISSN) Rafiee Taghanaki, S ; Arabloo, M ; Chamkalani, A ; Amani, M ; Zargari, M. H ; Adelzadeh, M. R ; Sharif University of Technology
    2013
    Abstract
    Through this work, a novel mathematical-based approach was proposed to develop reliable models for calculation of PVT properties of crude oils at various reservoir conditions. For this purpose, a new soft computing approach namely Least Square Support Vector Machine (LSSVM) modeling optimized with Coupled Simulated Annealing (CSA) optimization technique was implemented. The constructed models are evaluated by carrying out extensive experimental data reported in open literature. Results obtained by the proposed models were compared with the corresponding experimental values. Moreover, in-depth comparative studies have been carried out between these models and all other predictive models. The... 

    On the prediction of CO2 corrosion in petroleum industry

    , Article Journal of Supercritical Fluids ; Volume 117 , 2016 , Pages 108-112 ; 08968446 (ISSN) Hatami, S ; Ghaderi Ardakani, A ; Niknejad Khomami, M ; Karimi Malekabadi, F ; Rasaei, M. R ; Mohammadi, A. H ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    In this communication, a hybrid model based on Least Square Support Vector Machine (LSSVM) was constructed to predict CO2 corrosion rate. The input parameters of the model are temperature, CO2 partial pressure, flow velocity and pH. The data used for training and testing of the developed model are 612 and 109 data, respectively. In order to benefit LSSVM from Kernel learning, we compared three kernel functions to select the most efficient one. Furthermore, Coupled Simulated Annealing (CSA) optimization technique was adapted to choose the best optimal values of the model parameters. The results elucidate that Gaussian Kernel functions is the desired function which can afford high accuracy for... 

    Estimating the drilling fluid density in the mud technology: Application in high temperature and high pressure petroleum wells

    , Article Heavy Oil: Characteristics, Production and Emerging Technologies ; 2017 , Pages 285-295 ; 9781536108675 (ISBN); 9781536108521 (ISBN) Kamari, A ; Gharagheizi, F ; Shokrollahi, A ; Arabloo, M ; Mohammadi, A. H ; Sharif University of Technology
    Nova Science Publishers, Inc  2017
    Abstract
    Appropriate execution of drilling operation, in particular for high pressure and high temperature wells, requires accurate knowledge of behavior of the drilling fluid density as a function of pressure and temperature. In this communication, a novel mathematicalbased approach is presented to develop a reliable model for predict the density of four drilling fluid including water-based, oil-based, Colloidal Gas Aphron (CGA) and synthetic. To pursue our objective, a predictive model is proposed using a robust soft computing approach namely least square support vector machine (LSSVM) modeling optimized with coupled simulated annealing (CSA) optimization tool. Moreover, leverage approach, in which...