Loading...
Search for: cpt
0.009 seconds

    Actuator/sensor modeling for vibration of FGM solid circular plate using Reissner-Mindlin plate theory

    , Article ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik ; Volume 90, Issue 4 , 2010 , Pages 287-308 ; 00442267 (ISSN) Jafari Mehrabadi, S ; Kargarnovin, M. H ; Najafizadeh, M. M ; Sharif University of Technology
    2010
    Abstract
    In this paper, the vibration of a constant thickness circular plate made of functionally graded material (FGM) is controlled by implementing two piezoelectric layers as a sensor and an actuator. Assuming that the material properties of FGM plate vary only in the thickness direction according to the power law manner, the governing differential equations are derived based on the Reissner-Mindlin plate theory (RMPT). Moreover, in a parallel work another set of differential equations are also derived using classical plate theory (CPT). Then for two different kinds of plate boundary conditions these coupled differential equations are solved using separation of variable technique and obtained... 

    In situ horizontal stress from CPT in sand: a new approach

    , Article International Journal of Geotechnical Engineering ; 2017 , Pages 1-9 ; 19386362 (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Abstract
    Despite the various approaches in the literature adopted for analysing cone penetration test (CPT), determination of the initial horizontal stress and relative density of a sandy soil during this test has not been tackled yet. In order to propose a new method in this regard, a numerical study of CPT has been performed and the predicted results have been compared with several databases of comprehensive calibration chamber tests. The penetration mechanism has been then fully investigated by presenting different kinds of outputs for the surrounding soil. Finally, an innovative procedure has been suggested for estimating the initial horizontal stress and relative density during performing CPT in... 

    In situ horizontal stress from CPT in sand: a new approach

    , Article International Journal of Geotechnical Engineering ; Volume 13, Issue 6 , 2019 , Pages 538-547 ; 19386362 (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Despite the various approaches in the literature adopted for analysing cone penetration test (CPT), determination of the initial horizontal stress and relative density of a sandy soil during this test has not been tackled yet. In order to propose a new method in this regard, a numerical study of CPT has been performed and the predicted results have been compared with several databases of comprehensive calibration chamber tests. The penetration mechanism has been then fully investigated by presenting different kinds of outputs for the surrounding soil. Finally, an innovative procedure has been suggested for estimating the initial horizontal stress and relative density during performing CPT in... 

    In situ horizontal stress from CPT in sand: a new approach

    , Article International Journal of Geotechnical Engineering ; Volume 13, Issue 6 , 2019 , Pages 538-547 ; 19386362 (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Despite the various approaches in the literature adopted for analysing cone penetration test (CPT), determination of the initial horizontal stress and relative density of a sandy soil during this test has not been tackled yet. In order to propose a new method in this regard, a numerical study of CPT has been performed and the predicted results have been compared with several databases of comprehensive calibration chamber tests. The penetration mechanism has been then fully investigated by presenting different kinds of outputs for the surrounding soil. Finally, an innovative procedure has been suggested for estimating the initial horizontal stress and relative density during performing CPT in... 

    An analytical solution for nonlinear cylindrical bending of functionally graded plates

    , Article Thin-Walled Structures ; Volume 44, Issue 11 , 2006 , Pages 1129-1137 ; 02638231 (ISSN) Navazi, H. M ; Haddadpour, H ; Rasekh, M ; Sharif University of Technology
    Elsevier Ltd  2006
    Abstract
    In this paper, the nonlinear cylindrical bending of a functionally graded plate is studied. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the nonlinear equilibrium equations of the plates subjected to in-plane and transverse loadings. The governing equations are reduced to linear differential equation with nonlinear boundary conditions yielding a simple solution procedure. The results show that the functionally graded plates exhibit different behavior from... 

    A simple and fast solution for fault simulation using approximate parallel critical path tracing

    , Article Canadian Journal of Electrical and Computer Engineering ; Volume 43, Issue 2 , 2020 , Pages 100-110 Ehteram, A ; Sabaghian Bidgoli, H ; Ghasvari, H ; Hessabi, S ; Sharif University of Technology
    IEEE Canada  2020
    Abstract
    Due to the growing complexity of today's digital circuits, the speed of fault simulation has become increasingly important. Although critical path tracing (CPT) is faster than conventional methods, it is not fast enough for fault simulation of complex circuits with a large number of faults and tests. Exact stem analysis is the most important obstacle in accelerating the CPT method. The simplification of stem analysis eliminates time-consuming computations and makes the CPT method more parallelizable. An approximate and bit-parallel CPT algorithm is proposed for ultrafast fault simulation for both stuck-at-fault (SAF) and transition delay fault (TDF) models. Time linearity, speedup, and... 

    Nonlinear oscillations of a fluttering functionally graded plate

    , Article Composite Structures ; Volume 79, Issue 2 , 2007 , Pages 242-250 ; 02638223 (ISSN) Haddadpour, H ; Navazi, H. M ; Shadmehri, F ; Sharif University of Technology
    2007
    Abstract
    In this paper, the nonlinear aeroelastic behavior of functionally graded plates is studied in supersonic flow. For this purpose, the von Karman strains and piston theory have been employed to model structural nonlinearity and quasi-steady aerodynamic panel loading, respectively. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the properties follows a simple power-law distribution in terms of the volume fractions of constituents. The Hamilton's principle is used to construct the coupled nonlinear partial differential equations of motion. The derived equations are transformed into a set of coupled ordinary differential... 

    Cone penetration test in sand: anumerical-analytical approach

    , Article Computers and Geotechnics ; Volume 90 , 2017 , Pages 176-189 ; 0266352X (ISSN) Ahmadi, M. M ; Golestani Dariani, A. A ; Sharif University of Technology
    Abstract
    Separation of the effects of initial horizontal stress and relative density on cone tip resistance in sandy soils has been a complicated issue for many years. In order to overcome this problem, a numerical modeling of CPT which has been verified by calibration chamber tests, has been used in this paper to achieve a reliable analytical solution. The analytical solution has resulted in two relationships for sleeve friction and cone tip resistance in terms of the initial conditions of sandy soil. Based on the presented solution, the initial horizontal stress and relative density can be determined according to CPT measurements. © 2017 Elsevier Ltd  

    Thin-layer effects on the CPT qc measurement

    , Article Canadian Geotechnical Journal ; Volume 42, Issue 5 , 2005 , Pages 1302-1317 ; 00083674 (ISSN) Ahmadi, M. M ; Robertson, P. K ; Sharif University of Technology
    2005
    Abstract
    A numerical analysis is presented to model the cone penetration test (CPT) tip resistance in layered soil. Analyses are performed for two-layer soils composed of either sands with different relative densities or different materials (sand and clay). Parametric numerical modeling is used to determine the distance that a cone senses a new upcoming soil layer interface or a layer interface behind. Analyses are also carried out for a thin sand layer embedded in soft clay. It is seen that the full tip resistance may not be reached in thin stiff layers. This is especially true for penetration in thin dense sand layers interbedded in softer clay. A correction factor is suggested to correct the cone...