Loading...
Search for: crank-angle
0.007 seconds

    Prediction of stratified charge divided chamber engine performance

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 92-100 ; 10263098 (ISSN) Tiourad, M ; Mozafari, A ; Sharif University of Technology
    2009
    Abstract
    Certain stratified charge divided chamber engines have a very small pre-chamber, equipped with a spark plug and a main chamber connected to the pre-chamber through nozzles, A theoretical model is presented in this research to predict ignition delay and initiation of combustion in the pre-chamber. It considers flame progress in the pre-chamber up to the point where the flame penetrates the main chamber through the connecting nozzles. Step by step calculations then continue in the main chamber and the mass fraction burned and the energy release rate are calculated. The process continues to the point where all the fuel is burned. At each step, due to a one degree rotation of the crank shaft,... 

    Thermodynamic model for prediction of performance and emission characteristics of SI engine fuelled by gasoline and natural gas with experimental verification

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 7 , July , 2012 , Pages 2213-2225 ; 1738494X (ISSN) Mehrnoosh, D ; Asghar, H. A ; Asghar, M. A ; Sharif University of Technology
    2012
    Abstract
    In this study, a thermodynamic cycle simulation of a conventional four-stroke SI engine has been carried out to predict the engine performance and emissions. The first law of thermodynamics has been applied to determine in-cylinder temperature and pressure as a function of crank angle. The Newton-Raphson method was used for the numerical solution of the equations. The non-differential form of equations resulted in the simplicity and ease of the solution to predict the engine performance. Two-zone model for the combustion process simulation has been used and the mass burning rate was predicted by simulating spherical propagation of the flame front. Also, temperature dependence of specific...