Loading...
Search for: creep-deformation-mechanisms
0.009 seconds

    Microstructure evolution and its influence on deformation mechanisms during high temperature creep of a nickel base superalloy

    , Article Materials Science and Engineering A ; Volume 499, Issue 1-2 , 2009 , Pages 445-453 ; 09215093 (ISSN) Safari, J ; Nategh, S ; Sharif University of Technology
    2009
    Abstract
    The interaction of dislocation with strengthening particles, including primary and secondary γ′, during different stages of creep of Rene-80 was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During creep of the alloy at 871 °C under stress of 290 MPa, the dislocation network was formed during the early stages of creep, and the dislocation glide and climb process were the predominant mechanism of deformation. The density of dislocation network became more populated during the later stages of the creep, and at the latest stage of the creep, primary particles shearing were observed alongside with the dislocation glide and climb. Shearing of γ′... 

    Nanoindentation creep behavior of nanocomposite Sn-Ag-Cu solders

    , Article Journal of Electronic Materials ; Volume 41, Issue 8 , 2012 , Pages 2057-2064 ; 03615235 (ISSN) Roshanghias, A ; Kokabi, A. H ; Miyashita, Y ; Mutoh, Y ; Ihara, I ; Guan Fatt, R. G ; Madaah Hosseini, H. R ; Sharif University of Technology
    Abstract
    High-density, ultrasmall-pitch electronic applications require miniaturized solder bumps with improved thermomechanical performance. In addition, novel techniques which are able to precisely characterize these solder bumps are needed. One approach to meeting both of these requirements is to make use of recently developed nanocomposite solders with enhanced creep resistance, and to characterize these solders using a nanoindentation technique. In the present study, the creep behavior of ceria-reinforced nanocomposite solder foils fabricated by the accumulative roll-bonding process was characterized using a depth-sensing nanoindentation technique. It was found that the creep resistance of the... 

    Atomistic simulation of creep deformation mechanisms in nickel-based single crystal superalloys

    , Article Materials Science and Engineering A ; Volume 809 , 2021 ; 09215093 (ISSN) Khoei, A. R ; Tolooei Eshlaghi, G ; Shahoveisi, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the creep deformation mechanisms are investigated in nickel-based single crystal superalloys. Two-dimensional molecular dynamics (MD) simulations are conducted to model various temperatures, stress conditions, and phase interface crystal orientations. Ni-based single-crystal superalloys are of great importance in the aircraft industry due to their excellent high temperature creep resistance. This characteristic mainly originates from two features considered in their structure; firstly, their two-phase micro-structure comprising gamma γ and gamma prime γ′, and secondly the nature of this superalloy itself, which is a single-crystal. MD is a powerful tool to gain insight into...