Loading...
Search for: critical-buckling-load
0.005 seconds

    Structural integrity assessment of offshore jackets considering proper modeling of buckling in tubular members—a case study of resalat jacket

    , Article Journal of Marine Science and Application ; Volume 21, Issue 4 , 2022 , Pages 145-167 ; 16719433 (ISSN) Erfani, M. H ; Sharif University of Technology
    Editorial Board of Journal of Harbin Engineering  2022
    Abstract
    In the present research, results of buckling analysis of 384 finite element models, verified using three different test results obtained from three separate experimental investigations, were used to study the effects of five parameters such as D/t, L/D, imperfection, mesh size and mesh size ratio. Moreover, proposed equations by offshore structural standards concerning global and local buckling capacity of tubular members including former API RP 2A WSD and recent API RP 2A LRFD, ISO 19902, and NORSOK N-004 have been compared to FE and experimental results. One of the most crucial parts in the estimation of the capacity curve of offshore jacket structures is the correct modeling of... 

    Buckling Analysis of Reinforced Composite Conical Shells under Axial Compressive Load using GDQ Method

    , M.Sc. Thesis Sharif University of Technology Gholami, Peyman (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor) ; Shakouri, Meysam ($item.subfieldsMap.e) ; Noghabi, Mohammad ($item.subfieldsMap.e)
    Abstract
    The object of this study is to determine the buckling load of reinforced composite conical shells under axial compression. . Shells are reinforced by stringers and rings and the boundary conditions are assumed to be simply supported. At first the equilibrium equations are obtained using the first order shear deformation theory (FSDT), smeared stiffener technique and principle of minimum potential energy. In the following, the resulting equations which are the system of five variable coefficient partial differential equations in terms of displacement components are investigated by generalized differential quadrature method (GDQM). Finally the standard eigenvalue equation is formed and the... 

    Optimization of Porosity Distribution in Functionally Graded Porous Shape Memory Alloy Beams Using Genethic Algorithm

    , M.Sc. Thesis Sharif University of Technology Jamshidi, Mohammad Amin (Author) ; Arghavani Hadi, Jamal (Supervisor)
    Abstract
    Shape Memory alloys are a kind of intelligent materials developed in recent years due to their comprehensive use in medical, robotics, and other advanced sciences. Two main characteristics of them are shape memory effect and superelasticity put these materials in the category of advanced materials. Recently, the new branch of them attracted many studies which is the porous shape memory alloys. The importance of this class of material is related to their properties such as bio-compatibility, superelasticity and shape memory effect. Since shape memory alloys are usually expensive, a new field is developed known as functionally graded porosity distribution. This method is performed by... 

    3D Elasticity Buckling Solution for Transversely Isotropic Functionally Graded Rectangular Plates by Displacement Potential Function

    , M.Sc. Thesis Sharif University of Technology Jafari, Ali (Author) ; Khaloo, Alireza (Supervisor) ; Navayi Neya, Bahram (Co-Supervisor)
    Abstract
    The importance of transversely isotropic and functionally graded materials and also plates in industry necessitates studies on these kinds of structures. This study works on the buckling of simply supported rectangular transversely isotropic FGM plates subjected to in-plane uniaxial or biaxial static loads. For this purpose, discretization method is applied and the aforesaid inhomogeneous plate is divided into arbitrary number of sublayers parametrically (N). With the help of displacement potential functions, coupled different equations for each sublayer are simplified to two uncoupled different equations in terms of the potential functions. These governing equations for transversely... 

    Re-interpreting simultaneous buckling modes of axially compressed isotropic conical shells

    , Article Thin-Walled Structures ; Vol. 84 , November , 2014 , pp. 360-368 ; ISSN: 02638231 Shakouri, M ; Spagnoli, A ; Kouchakzadeh, M. A ; Sharif University of Technology
    Abstract
    Elastic stability of shell structures under certain loading conditions is characterized by a dramatically unstable postbuckling behavior. The presence of simultaneous 'competing' buckling modes (corresponding to the same critical buckling load) is understood to be largely responsible for such behavior. In this paper, within the framework of linear bifurcation eigenvalue analysis and Donnell shallow shell theory, the presence of simultaneous buckling modes in axially compressed isotropic cones is determined using the semi-analytical method of Galerkin. The results are presented in the plane of the dimensionless reciprocal meridional and circumferential buckling half wavelengths, and are... 

    Application of the homotopy method for the analytic approach of the nonlinear free vibration analysis of the simple end beams using four engineering theories

    , Article Acta Mechanica ; Volume 212, Issue 3-4 , 2010 , Pages 199-213 ; 00015970 (ISSN) Kargarnovin, M. H ; Jafari Talookolaei, R. A ; Sharif University of Technology
    2010
    Abstract
    In this paper, nonlinear vibration analyses of Euler-Bernoulli, Rayleigh, Shear and Timoshenko beams with simple end conditions are presented using homotopy analysis method (HAM). Closed form solutions for natural frequencies, beam deflection, post-buckling load-deflection relation, and critical buckling load are presented. The calculated natural frequencies for all four cases were verified against some available results in the literature and very good agreement observed. Furthermore, obtained results for deflection, buckling, and post-buckling of each beam are presented and the effects of some parameters, such as slenderness ratio, the rotary inertia, and the shear deformation are examined  

    Torsional buckling of generally laminated conical shell

    , Article Meccanica ; Volume 52, Issue 4-5 , 2017 , Pages 1051-1061 ; 00256455 (ISSN) Shakouri, M ; Sharghi, H ; Kouchakzadeh, M. A ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    Buckling of generally laminated conical shells under uniform torsion with simply-supported boundary conditions is investigated. The Donnel type strain displacement relations are used to obtain potential strain energy of the shell and membrane stability equation is applied to acquire the external work done by torsion. The Ritz method is used to solve the governing equations and critical buckling loads are obtained. The accuracy of the results is validated in comparison of with other investigations and finite element method. The effects of lamination sequence, semi-vertex angle and length to radius ratio of the cone are evaluated and mode shapes are presented for two types of lamination... 

    Stability analysis of generally laminated conical shells with variable thickness under axial compression

    , Article Mechanics of Advanced Materials and Structures ; 2018 ; 15376494 (ISSN) Kazemi, M. E ; Kouchakzadeh, M. A ; Shakouri, M ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    The buckling of generally laminated conical shells having thickness variations under axial compression is investigated. This problem usually arises in the filament wound conical shells where the thickness changes through the length of the cone. The thickness may be assumed to change linearly through the length of the cone. The fundamental relations for a conical shell with variable thickness applying thin-walled shallow shell theory of Donnell-type and theorem of minimum potential energy have been derived. Nonlinear terms of Donnell equations are linearized by the use of adjacent-equilibrium criterion. Governing equations are solved using power series method. This procedure enables us to... 

    Stability analysis of generally laminated conical shells with variable thickness under axial compression

    , Article Mechanics of Advanced Materials and Structures ; Volume 27, Issue 16 , 2020 , Pages 1373-1386 Kazemi, M. E ; Kouchakzadeh, M. A ; Shakouri, M ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    The buckling of generally laminated conical shells having thickness variations under axial compression is investigated. This problem usually arises in the filament wound conical shells where the thickness changes through the length of the cone. The thickness may be assumed to change linearly through the length of the cone. The fundamental relations for a conical shell with variable thickness applying thin-walled shallow shell theory of Donnell-type and theorem of minimum potential energy have been derived. Nonlinear terms of Donnell equations are linearized by the use of adjacent-equilibrium criterion. Governing equations are solved using power series method. This procedure enables us to... 

    Vibration and buckling analysis of functionally graded beams using reproducing kernel particle method

    , Article Scientia Iranica ; Vol. 21, Issue 6 , 2014 , pp. 1896-1906 ; e-ISSN : 23453605 Saljooghi, R ; Ahmadian, M. T ; Farrahi, G. H ; Sharif University of Technology
    Abstract
    This paper presents vibration and buckling analysis of functionally graded beams with different boundary conditions, using reproducing kernel particle method (RKPM). Vibration of simple Euler-Bernoulli beam using RKPM is already developed and reported in the literature. Modeling of FGM beams using theoretical method or finite element technique is not evolved with accurate results for power law form of FGM with large power of "n" value so far. Accuracy of the RKPM results is very good and is not sensitive to n value. System of equations of motion is derived using Lagrange's method under the assumption of Euler-Bernoulli beam theory. Boundary conditions of the beam are taken into account using... 

    Application of third order shear deformation theory in buckling analysis of 2D-functionally graded cylindrical shell reinforced by axial stiffeners

    , Article Composites Part B: Engineering ; Volume 79 , September , 2015 , Pages 236-253 ; 13598368 (ISSN) Satouri, S ; Kargarnovin, M. H ; Allahkarami, F ; Asanjarani, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    This paper presents buckling analysis of a two-dimensional functionally graded cylindrical shell reinforced by axial stiffeners (stringer) under combined compressive axial and transverse uniform distributive load. The shell material properties are graded in the direction of thickness and length according to a simple power law distribution in terms of the volume fractions of the constituents. Primarily, the third order shear deformation theory (TSDT) is used to derive the equilibrium and stability equations. Since there is no closed form solution, the numerical differential quadrature method, (DQM), is applied for solving the stability equations. Initially, the obtained results for an... 

    Multi-objective optimization of functionally graded materials, thickness and aspect ratio in micro-beams embedded in an elastic medium

    , Article Structural and Multidisciplinary Optimization ; Volume 58, Issue 1 , July , 2018 , Pages 265-285 ; 1615147X (ISSN) Taati, E ; Sina, N ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Optimal design of micron-scale beams as a general case is an important problem for development of micro-electromechanical devices. For various applications, the mechanical parameters such as mass, maximum deflection and stress, natural frequency and buckling load are considered in strategies of micro-manufacturing technologies. However, all parameters are not of equal importance in each operating condition but multi-objective optimization is able to select optimal states of micro-beams which have desirable performances in various micro-electromechanical devices. This paper provides optimal states of design variables including thickness, distribution parameter of functionally graded... 

    Effects of geometric imperfections on the performance of Sahand cooling tower

    , Article 10th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2010, Bangkok, 3 August 2006 through 5 August 2006 ; Volume 5 , 2006 , Pages 331-338 ; 9748257207 (ISBN); 9789748257204 (ISBN) Riahi, H. T ; Haghighi, B ; Sharif University of Technology
    School of Engineering and Technology  2006
    Abstract
    During construction of one of the Sahand cooling towers due to slip forming performance some imperfections were raised mostly between elevation of +30 and +40 meter. It was evaluated that some points of the shell should be repaired. In constructing the cooling tower from elevation +40 to +60 meter these imperfections were removed and the cooling tower was constructed with no problem until the elevation +130 meter. In this paper reasons of generation of geometric imperfections in Sahand cooling tower are clearly shown and possible ways for preventing them are discussed. Applied repairing method for Sahand cooling tower is explained in detail. Geometrical imperfections of the constructed...