Loading...
Search for: crop-yield
0.01 seconds

    One‐dimensional convolutional neural networks for hyperspectral analysis of nitrogen in plant leaves

    , Article Applied Sciences (Switzerland) ; Volume 11, Issue 24 , 2021 ; 20763417 (ISSN) Pourdarbani, R ; Sabzi, S ; Rohban, M. H ; Hernández‐hernández, J. L ; Gallardo‐bernal, I ; Herrera‐miranda, I ; García‐mateos, G ; Sharif University of Technology
    MDPI  2021
    Abstract
    Accurately determining the nutritional status of plants can prevent many diseases caused by fertilizer disorders. Leaf analysis is one of the most used methods for this purpose. However, in order to get a more accurate result, disorders must be identified before symptoms appear. Therefore, this study aims to identify leaves with excessive nitrogen using one‐dimensional convolutional neural networks (1D‐CNN) on a dataset of spectral data using the Keras library. Seeds of cucumber were planted in several pots and, after growing the plants, they were divided into different classes of control (without excess nitrogen), N30% (excess application of nitrogen fertilizer by 30%), N60% (60% overdose),... 

    A method to estimate surface soil moisture and map the irrigated cropland area using sentinel-1 and sentinel-2 data

    , Article Sustainability (Switzerland) ; Volume 13, Issue 20 , 2021 ; 20711050 (ISSN) Rabiei, S ; Jalilvand, E ; Tajrishy, M ; Sharif University of Technology
    MDPI  2021
    Abstract
    Considering variations in surface soil moisture (SSM) is essential in improving crop yield and irrigation scheduling. Today, most remotely sensed soil moisture products have difficulties in resolving irrigation signals at the plot scale. This study aims to use Sentinel-1 radar backscatter and Sentinel-2 multispectral imagery to estimate SSM at high spatial (10 m) and temporal resolution (at least 5 days) over an agricultural domain. Three supervised machine learning algorithms, multilayer perceptron (MLP), a convolutional neural network (CNN), and linear regression models, were trained to estimate changes in SSM based on the variation in surface reflectance and backscatter over five... 

    A novel integrated framework to evaluate greenhouse energy demand and crop yield production

    , Article Renewable and Sustainable Energy Reviews ; Volume 96 , 2018 , Pages 487-501 ; 13640321 (ISSN) Golzar, F ; Heeren, N ; Hellweg, S ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Greenhouses are complex systems that require considerable amounts of energy. In order to optimize their performance, it is necessary to reduce the amount of energy per unit of crop produced. This requires a combined assessment of greenhouse energy balance and crop growth, as well as their interaction. In this work, more than 30 existing greenhouse models are reviewed and different algorithms are combined to propose an integrated energy-yield model. The physical model of greenhouse energy demand is based on the dynamic energy and mass balance while yield production is based on a physiological crop model. The integrated model is validated with observed energy demand and crop yield datasets... 

    Comparison of classic classifiers, metaheuristic algorithms and convolutional neural networks in hyperspectral classification of nitrogen treatment in tomato leaves

    , Article Remote Sensing ; Volume 14, Issue 24 , 2022 ; 20724292 (ISSN) Benmouna, B ; Pourdarbani, R ; Sabzi, S ; Fernandez Beltran, R ; García-Mateos, G ; Molina Martínez, J. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Tomato is an agricultural product of great economic importance because it is one of the most consumed vegetables in the world. The most crucial chemical element for the growth and development of tomato is nitrogen (N). However, incorrect nitrogen usage can alter the quality of tomato fruit, rendering it undesirable to customers. Therefore, the goal of the current study is to investigate the early detection of excess nitrogen application in the leaves of the Royal tomato variety using a non-destructive hyperspectral imaging system. Hyperspectral information in the leaf images at different wavelengths of 400–1100 nm was studied; they were taken from different treatments with normal nitrogen... 

    Partial root zone drying irrigation improves water use efficiency but compromise the yield and quality of cotton crop

    , Article Communications in Soil Science and Plant Analysis ; Volume 52, Issue 13 , 2021 , Pages 1558-1573 ; 00103624 (ISSN) Iqbal, R ; Raza, M. A. S ; Rashid, M .A ; Toleikiene, M ; Ayaz, M ; Mustafa, F ; Ahmed, M. Z ; Hyder, S ; Rahman, M. H. U ; Ahmad, S ; Aslam, M. U ; Haider, I ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Water shortage is the main limitation for agricultural production in many parts of the world. Drought or unavailability of water may seriously limit plant growth as well as yield. A pot experiment was carried out to evaluate the effects of various irrigation strategies, i.e., Full (FI), deficit (DI) and partial root-zone drying (PRD) on physiological, biochemical and yield-related attributes of cotton crop. Irrigation treatments started 60 days after planting and lasted for 60 days. For FI and DI, 100% and 50% of evapotranspiration (ET) was replaced by irrigating the entire pot surface every 4–5 days. For PRD, root system was split into two equal halves and during each irrigation event, only... 

    Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts

    , Article Biomass and Bioenergy ; Volume 150 , 2021 ; 09619534 (ISSN) Malekghasemi, S ; Kariminia, H. R ; Plechkova, N. K ; Ward, V. C. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, four types of tetrabutylphosphonium carboxylate ionic liquids (ILs) were synthesized and used for a one-pot transesterification of wet Chlorella vulgaris (C. vulgaris) microalgae into fatty acid methyl esters (FAME) in the presence of methanol, as well as refined oils (sunflower, canola, and corn oil). The resulting process removed the need for complete drying and lipid extraction steps typically needed for biodiesel production from microalgae. The leading candidate ionic liquid catalyst, tetrabutylphosphonium formate ([P4444][For]), was further optimized using response surface methodology to minimize material consumption, increase water compatibility, reduce processing time...