Loading...
Search for: crude-samples
0.009 seconds

    A systematic study of asphaltic sludge and emulsion formation damage during acidizing process: Experimental and modeling approach

    , Article Journal of Petroleum Science and Engineering ; Volume 207 , 2021 ; 09204105 (ISSN) Pourakaberian, A ; Ayatollahi, S ; Shirazi, M. M ; Ghotbi, C ; Sisakhti, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Acidizing is widely used to remove near-wellbore damage and enhance the inflow performance of the reservoir to boost the well oil production rate. However, when the injected acid exposes to reservoir oil, either asphaltic sludge or emulsion forms as acid-induced damages. Therefore, laboratory compatibility tests are required before every acidizing job to determine both the acid sensitivity of oil samples and the optimal dosage of chemical inhibitors that should be used to prevent sludge and emulsion formation. The lack of knowledge to predict the risk of asphaltic sludge and emulsion damages for different oil and acid systems necessitates expensive and time-consuming compatibility tests... 

    An experimental investigation of asphaltene precipitation during natural production of heavy and light oil reservoirs: The role of pressure and temperature

    , Article Petroleum Science and Technology ; Volume 29, Issue 10 , 2011 , Pages 1054-1065 ; 10916466 (ISSN) Alizadeh, A ; Nakhli, H ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Many oil reservoirs encounter asphaltene precipitation as a major problem during natural production. In spite of numerous experimental studies, the effect of temperature on asphaltene precipitation during pressure depletion at reservoir conditions is still obscure in the literature. To study their asphaltene precipitation behavior at different temperatures, two Iranian light and heavy live oil samples were selected. First, different screening criteria were applied to evaluate asphaltene instability of the selected reservoirs using pressure, volume, and temperature data. Then, a high pressure, high temperature filtration (HPHT) setup was designed to investigate the asphaltene precipitation...