Loading...
Search for: current-reference-limiter
0.008 seconds

    Reinforcing fault ride through capability of grid forming voltage source converters using an enhanced voltage control scheme

    , Article IEEE Transactions on Power Delivery ; 2018 ; 08858977 (ISSN) Zarei, F ; Mokhtari, H ; Ghasemi, M. A ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Medium power distributed energy resources (DERs) are commonly connected to medium voltage distribution systems via voltage source converters (VSCs). Several guidelines and standards have been developed to establish the needed criteria and requirements for DERs interconnections. In this respect, it is preferred to reinforce the VSC fault ride through (FRT) capability, which considerably minimizes the DG outage period and reconnection time and results in a resilient system against short circuits. Considering the significant number of asymmetrical faults in distribution systems, the VSC response in such conditions must be investigated, and consequently, its FRT capability must be reinforced. In... 

    Reinforcing fault ride through capability of grid forming voltage source converters using an enhanced voltage control scheme

    , Article IEEE Transactions on Power Delivery ; Volume 34, Issue 5 , 2019 , Pages 1827-1842 ; 08858977 (ISSN) Zarei, S. F ; Mokhtari, H ; Ghasemi, M. A ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Medium power distributed energy resources (DERs) are commonly connected to medium voltage distribution systems via voltage source converters (VSCs). Several guidelines and standards have been developed to establish the needed criteria and requirements for DERs interconnections. In this respect, it is preferred to reinforce the VSC fault ride through (FRT) capability, which considerably minimizes the DG outage period and reconnection time and results in a resilient system against short circuits. Considering the significant number of asymmetrical faults in distribution systems, the VSC response in such conditions must be investigated, and consequently, its FRT capability must be reinforced. In...