Loading...
Search for: cutting-tools
0.014 seconds
Total 34 records

    The effect of machining parameters on force signal and tool wear in stone cutting

    , Article AIP Conference Proceedings, 24 October 2010 through 27 October 2010, Paris ; Volume 1315 , 2010 , Pages 961-966 ; 0094243X (ISSN) ; 9780735408715 (ISBN) Yousefi, R ; Gorjizadeh, A ; Mikaeil, R ; Sharif University of Technology
    2010
    Abstract
    The application of sensor system is becoming more commonplace in improving productivity and reliability. Although measuring force signal have been widely used for monitoring of metal machining process that their application to stone cutting has not been well investigated. In this paper, the effect of machining parameter on force signal and tool wear was investigated. The result indicate that increasing of the depth of cut and spindle speed will increase the force and tool wear while increasing feed rate will increase force and decrease tool wear  

    Robust control for time-fractional diffusion processes: Application in temperature control of an alpha silicon carbide cutting tool

    , Article IET Control Theory and Applications ; Volume 12, Issue 15 , 2018 , Pages 2022-2030 ; 17518644 (ISSN) Sayyaf, N ; Tavazoei, M. S ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    Different real-world processes can be described by a linear model parameterised with respect to the processoperating point, as an uncertain parameter. The family of transport processes with long memory is a kind of these processeswhich are characterised by the parameterised time-fractional diffusion equations. This study proposes a generalised isodamping feature for achieving the phase margin invariance regardless of the uncertain parameter variations in control of timefractional diffusion processes. Also, the study suggests an analytical method to tune stabilising fractional-order proportional-integral/proportional-derivative controllers for adjusting a desired value for the phase margin at... 

    Effects of tool rake angle and tool nose radius on surface quality of ultraprecision diamond-turned porous silicon

    , Article Journal of Manufacturing Processes ; Volume 37 , 2019 , Pages 321-331 ; 15266125 (ISSN) Heidari, M ; Akbari, J ; Yan, J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper presents an investigation of the effects of tool rake angle and nose radius on the surface quality of ultraprecision diamond-turned porous silicon. The results showed that as rake angle decreases, the high-stress field induced by the tool edge increases, causing microcracks to propagate extensively near the pore walls. As a result, the ductile-machined areas shrank under a negative tool rake angle. On the other hand, brittle fracture occurred around pores released cutting pressure significantly. These trends of rake angle effects are distinctly different from those in the cutting of non-porous silicon. Finite element simulation of stress in the cutting area agreed with the... 

    A simple relation in elastic contact problems

    , Article Tribology International ; Volume 41, Issue 5 , 2008 , Pages 341-347 ; 0301679X (ISSN) Adibnazari, S ; Sharafbafi, F ; Sharif University of Technology
    2008
    Abstract
    In this paper, a new relation is introduced that simplifies the determination of the Muskhelishvili's potential function in plane contact problems. The relation is Φ (z) = 1 / 2 [p (z) - i q (z)], which is correct for all uncoupled contact problems. The new relation is proved in a mathematical way and utilized to obtain the potential function in several contact problems. A complete agreement has been observed between our results and the potential functions that have been obtained from complicated methods in the past. Utilization of the new relation simplifies the solution of contact problems and analytical calculation of the stress and displacement fields, which may lead to the design of... 

    The effect of Cobalt Replacement by Nickel on Microstructure, Physical and Mechanical Properties of WC-Co Hardmetals

    , M.Sc. Thesis Sharif University of Technology Muhammadpour, Meysam (Author) ; Pourazerang, Kazem (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    WC-Co hardmetals that are produced through powder metallurgy rout are vastely used as wear resistant parts. In these materials hard particles of wolfram carbide are embodied in a cobalt binder. Because of their high hardness and adequate toughness, hardmetals have found wide range of applications in cutting tool industry. During the last decades a number of researches have been carried out to improve their mechanical and wear properties by different binders and carbide particle sizes. Because of high hardness, Tungsten carbide has a good wear resistant. It has very low thermal expansion coefficient and high wetting ability with molten metals. Unlike high hardness, it has limited toughness.... 

    Bifurcation analysis of nonlinear milling process with tool wear and process damping: Sub-harmonic resonance under regenerative chatter

    , Article International Journal of Mechanical Sciences ; Vol. 85, issue , August , 2014 , p. 1-19 Moradi, H ; Vossoughi, G ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    In this paper, bifurcation analysis is performed for the nonlinear milling process under sub-harmonic resonance and regenerative chatter, with tool wear and process damping effects. Multiple-scales approach is used to construct analytical approximate solutions for non-autonomous parametrically excited equations of the system with time delay terms. The new bifurcation parameters are the detuning parameter (deviation of the tooth passing frequency from three times of the chatter frequency), damping ratio (affected by process damping) and tool wear width. Jump phenomenon and multi-values responses are observed in the first order solution under sub-harmonic resonance condition. Periodic,... 

    Ultrasonic-assisted drilling of inconel 738-LC

    , Article International Journal of Machine Tools and Manufacture ; Volume 47, Issue 7-8 , 2007 , Pages 1027-1033 ; 08906955 (ISSN) Azarhoushang, B ; Akbari, J ; Sharif University of Technology
    2007
    Abstract
    Generally in the drilling of modern aviation materials such as nickel and titanium base super alloys, problems frequently occur in terms of burr formation at the cutter exit, tool stress, high heat generation on tool surface as well as low process reliability. A recent and promising method to overcome these technological constraints is the use of ultrasonic assistance, where high-frequency and low-amplitude vibrations are superimposed on the movement of cutting tools. This paper presents the design of an ultrasonically vibrated tool holder and the experimental investigation of ultrasonically assisted drilling of Inconel 738-LC. The circularity, cylindricity, surface roughness and hole... 

    Using a combination of vibration absorber and a classical active controller to suppress the chatter vibration and increase the stability in turning process

    , Article 10th International Conference on Modern Circuits and Systems Technologies, MOCAST 2021, 5 July 2021 through 7 July 2021 ; 2021 ; 9781665418478 (ISBN) Ebadi, Y ; Moradi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Free, forced, and self-excited vibrations are the three main types of machine tool vibrations. Self-excited vibration is the most important type of destructive vibration in machining. The most important factor in increasing the chipping rate, stability, and tool life is decreasing this type of destructive vibration. In this paper, we aim to introduce a method to control the self-excited vibrations by the means of the combining a vibration absorber as a passive controlling method and a classical active controller such as PID or compensator or the other classical methods. Utilizing the SIMULINK toolbox of MATLAB software, first, we designed and added the vibration absorber to the model... 

    Finite element simulation of ultrasonic-assisted machining: a review

    , Article International Journal of Advanced Manufacturing Technology ; Volume 116, Issue 9-10 , 2021 , Pages 2777-2796 ; 02683768 (ISSN) Lotfi, M ; Akbari, J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Ultrasonic-assisted machining is an advanced method which could improve the process of machining. Besides, simulation modeling process is a method to help the researchers analyze different aspects of the process with more details in a shorter time. Simulation of ultrasonic-assisted machining is also a field of research that is of interest to researchers working in the field of machining processes. In recent years, a variety of papers have been published where cutting forces, chip formation, tool wear and temperature, and microstructure changes were simulated. That being the case, a review paper is required to represent the advances implemented by researchers in the simulation of... 

    Experimental modeling and optimizing process parameters in the laser assisted machining of silicon carbide particle-reinforced aluminum matrix composites

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Mirshamsi, S. M. A ; Movahhedy, M. R ; Khodaygan, S ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    The process of laser assisted machining (LAM) of metal matrix composites (MMC) is experimentally studied. The effects of process parameters (cutting speed, feed rate and depth of cut), laser parameters (laser power, laser frequency and laser beam angle), and the percentage of reinforcing particles on the tool wear and the surface roughness are investigated. Furthermore, the effects of the mentioned parameters on the built-up edge (BUE), chip shape, and workpiece temperature are explored. The experiments were performed using uncoated tungsten carbide and PCD tools under dry conditions. In order to analyze the sensitivity of the process parameters, the Plackett-Burman method was used for... 

    Effects of tool rake angle and tool nose radius on surface quality of ultraprecision diamond-turned porous silicon

    , Article Journal of Manufacturing Processes ; Volume 37 , 2019 , Pages 321-331 ; 15266125 (ISSN) Heidari, M ; Akbari, J ; Yan, J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper presents an investigation of the effects of tool rake angle and nose radius on the surface quality of ultraprecision diamond-turned porous silicon. The results showed that as rake angle decreases, the high-stress field induced by the tool edge increases, causing microcracks to propagate extensively near the pore walls. As a result, the ductile-machined areas shrank under a negative tool rake angle. On the other hand, brittle fracture occurred around pores released cutting pressure significantly. These trends of rake angle effects are distinctly different from those in the cutting of non-porous silicon. Finite element simulation of stress in the cutting area agreed with the... 

    Manufacturing error compensation based on cutting tool location correction in machining processes

    , Article International Journal of Computer Integrated Manufacturing ; Vol. 27, Issue. 11 , 29 Oct , 2014 , pp. 969-978 ; ISSN: 0951192X Khodaygan, S ; Sharif University of Technology
    Abstract
    Inaccuracies in workpiece location lead to errors in position and orientation of machined features on the workpiece, and strongly affect the assemblability and the quality of the product. The accurate positioning of workpiece on a fixture is influenced by rigid body displacements and rotations of the workpiece due to several errors (e.g. geometric radial and position errors in locators and manufacturing tolerances of the workpiece). In this paper, an efficient approach is introduced for analysis and compensation errors in the workpiece-fixture-cutting tool system. A new mathematical formulation of workpiece-fixture modelling is proposed to establish the relationship between the locating... 

    Contact of an asymmetrical rounded apex wedge with a half plane

    , Article International Journal of Engineering Science ; Volume 50, Issue 1 , January , 2012 , Pages 192-197 ; 00207225 (ISSN) Adibnazari, S ; Sharafbafi, F ; Ghanati, P ; Sharif University of Technology
    Abstract
    Two-dimensional elastic contact problem of an asymmetrical rounded apex wedge with a half plane is considered and an analytical solution is presented for vertical and horizontal external loading in the presence of coulomb friction. The pressure and shear distribution functions are found in closed form under partial slip condition. Further by utilizing a new relation Muskhelishvili's potential function is obtained and results are analyzed. Designing better cutting tools, selecting fretting fatigue test pads and deeper lap joint analyzing are several practical applications of the outcomes  

    Temperature control of a cutting process using fractional order proportional-integral-derivative controller

    , Article Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME ; Volume 133, Issue 5 , March , 2011 ; 00220434 (ISSN) Tavakoli Kakhki, M ; Haeri, M ; Sharif University of Technology
    2011
    Abstract
    In this paper, the fractionalized differentiating method is implemented to reduce commensurate fractional order models complexity. The prominent properties of this method are its simplicity and guarantee of preserving the stability of a specific class of fractional order models in their reduced counterparts. The presented reduction method is employed in simplifying complicated fractional order controllers to a fractional order PID (FOPID) controller and proposing tuning rules for its parameters adjustment. Finally, the efficiency of the FOPID tuning rule obtained based on the proposed reduction method is shown in the temperature control of a cutting process  

    An optimization technique on ultrasonic and cutting parameters for drilling and deep drilling of nickel-based high-strength Inconel 738LC superalloy with deeper and higher hole quality

    , Article International Journal of Advanced Manufacturing Technology ; Volume 82, Issue 5-8 , 2016 , Pages 877-888 ; 02683768 (ISSN) Baghlani, V ; Mehbudi, P ; Akbari, J ; Zal Nezhad, E ; Sarhan, A. A. D ; Hamouda, A. M. S ; Sharif University of Technology
    Springer-Verlag London Ltd 
    Abstract
    In this research work, an ultrasonic assisted drilling system is employed to apply both rotation and vibration to drill bits. The transducer horn transfers power very efficiently and changes tools effortlessly. The setup used to conduct drilling tests is Inconel 738LC with depth-to-diameter ratios from 2 to 10 by conventional drilling (CD), ultrasonic assisted drilling (UAD), and electro discharge drilling (EDD). The effects of ultrasonic vibration amplitude, spindle speed, and number of steps to drill each hole on machining force and surface roughness in UAD are investigated. The results demonstrate not only a significant improvement in tool life (by applying ultrasonic vibration to the... 

    Analytical prediction of the temperature field in laser assisted machining

    , Article Procedia CIRP, 31 May 2016 through 2 June 2016 ; Volume 46 , 2016 , Pages 575-578 ; 22128271 (ISSN) Kashani, M. M ; Movahhedy, M. R ; Ahmadian, M. T ; Razavi, R. S ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Laser assisted machining (LAM) is a promising technology for machining hard to cut materials. In most experimental cases, LAM is undergone in two stages; first, the temperature at the material removal point (Tmr) is tuned by adjusting laser parameters and next, the cutting tool is engaged. Introduction of highly localized heat energy to the workpiece makes the modeling of this process very complicated. Hence, an analytical model for the first stage of the process - rather than multiple experiments or FE modelling - would be beneficial. This article presents an analytical solution to the transient, temperature field in a rotating cylinder subject to a localized laser heat source. The... 

    A novel 3-dimentional ultra high precision positioning platform for micro machining cutting tools

    , Article 3rd International Conference on Control, Automation and Robotics, ICCAR 2017, 22 April 2017 through 24 April 2017 ; 2017 , Pages 284-288 ; 9781509060870 (ISBN) Zabihollah, A ; Yadegari, A ; Rashidi, D ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Ultra-high precision machining is proposed by externally actuating the work piece in linear motions in the X-Y plane and linear motion in the Z-axis. To solve the problems in the machining process such as nonlinearity and low repeatability positioning accuracy of machining tools in a larger scale, a novel platform for cutting tools in micro machining based on electrostatic linear micromotors and piezoelectric stack actuator system is presented. © 2017 IEEE  

    Microstructure and mechanical properties of friction stir welded ferrite-martensite DP700 steel

    , Article Materials Science and Engineering A ; Volume 737 , 2018 , Pages 213-222 ; 09215093 (ISSN) Mahmoudiniya, M ; Kokabi, A. H ; Kheirandish, S ; Kestens, L. A. I ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the present work, friction stir welding technique was applied on 2 mm thick ferrite-martensite DP700 steel sheets at rotational speeds of 600, 800 and 1000 rpm. The microstructure and mechanical properties of the welds were evaluated. It was found that Zener-Hollomon parameter decreased with increasing rotational speed that leads to grain coarsening in the stir zone. It was also found that increment of rotational speed increased softening phenomenon in sub-critical heat affected zone. The results also showed that the presence of WC particles in the stir zone, which was due to the tool wear, as well as formation of a soft ferrite band degrade the tensile properties at rotational speed of... 

    Adaptive sliding mode control of regenerative chatter and stability improvement in boring manufacturing process with model uncertainties

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 234, Issue 6 , 2020 , Pages 1171-1181 Moradian, H ; Abbasi, M. H ; Moradi, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In the machining processes, vibration suppression is crucial in order to achieve the high precision as well as high-quality surface and increase of the material removal rate. In this paper, an adaptive sliding mode control approach is presented to supress the chattering phenomenon in the boring process in the presence of model uncertainties and unmodeled dynamics. The boring bar is modeled as a cantilever Euler–Bernoulli beam, which is actuated by a piezo-actuator located at the bar's end. As a more realistic model, the cutting tool is modeled as an added mass at the bar's end. In order to derive the equations of motion, mode summation method with inclusion the first three modes of vibration... 

    Sliding mode control of the turning process for eliminating regenerative chatter in the presence of parametric uncertainties

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 3 , 2007 , Pages 449-456 ; 0791842975 (ISBN) Moradi, H ; Movahhedy, M. R ; Vossoughi, G. R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    Chatter suppression is an important topic in any type of machining process. In this paper, orthogonal cutting process is modeled as a single degree of freedom dynamic system. A nonlinear delay differential equation is presented that models flank wear of the tool. Uncertainties in cutting velocity, tool wear size and parameters of the dynamic model are included in the model of cutting process. The force provided by a piezo-actuator is taken as the control input of the system. A sliding mode control scheme is used and an effective control law is derived which suppresses the chatter vibration. Results for two distinct cases of a sharp tool and a worn tool are presented and compared which shows...