Loading...
Search for: d-glucose
0.006 seconds

    Embryonic stem cells maintain an undifferentiated state on dendrimer-immobilized surface with D-glucose display

    , Article Polymers ; Volume 3, Issue 4 , 2011 , Pages 2078-2087 ; 20734360 (ISSN) Mashayekhan, S ; Kim, M. H ; Kino Oka, M ; Miyazaki, J. I ; Taya, M ; Sharif University of Technology
    2011
    Abstract
    In serial passaging cultures of mouse embryonic stem (ES) cells, we employed a dendrimer-immobilized substrate that displayed D-glucose as a terminal ligand. The D-glucose-displaying dendrimer (GLU/D) surface caused the ES cells to form loosely attached spherical colonies, while those on a gelatin-coated surface formed flatter colonies that were firmly attached to the surface. Despite the morphological similarities between the colonies on the GLU/D surface and aggregates on a conventional bacteriological dish, immunostaining and RT-PCR analyses revealed the maintenance of cells within the spherical colonies on the GLU/D surface in an undifferentiated state with very low expressions of... 

    Solid-liquid catalytic reactions in a new two-impinging-jets reactor: Experiment and modeling

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 6 , 2009 , Pages 2861-2869 ; 08885885 (ISSN) Dehkordi, A. M ; Safari, I ; Ebrahimi, A. A ; Sharif University of Technology
    2009
    Abstract
    Novel type of two-impinging-jets loop reactor (TIJLR) has been proposed and tested successfully for the solid-liquid catalytic reactions. The TIJLR was tested using the catalytic reaction of isomerization of D-glucose to D-fructose by immobilized glucose isomerase catalyst as a typical model system of solid-liquid catalytic reactions. The TIJLR is characterized by a high intensity reaction chamber, which is separated by a perforated plate from other parts of the reactor. The perforated plate was used as a filter to keep the catalyst particles within the reaction chamber. A compartment model with two adjustable parameters was considered to describe the pattern of flow within the reaction...