Loading...
Search for: data-communication-equipment
0.011 seconds

    Dynamic analysis of an a-shaped piezo-actuated walking microrobot

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 10 , 2010 , Pages 161-170 ; 9780791844472 (ISBN) Kamali Eigoli, A ; Vossoughi, G ; Sharif University of Technology
    2010
    Abstract
    In this paper, a novel, A-shaped microrobot with nanometric resolution for precision positioning applications is addressed. The locomotion concept of the mechanism is founded on the "friction drive principle". To achieve the translational motion, a stack piezoelectric actuates the microrobot near its natural frequency. The dynamic modeling of the mechanism is based on the assumptions of linear behavior of piezo stack actuator and Coulomb friction model at contact points. The suitability of three simple, friction-based locomotion modes for implementation on the proposed device is presented. Influences of different friction coefficients on the behavior of the microrobot, with respect to... 

    Control of planar motion of a magnetic microrobot using a novel electromagnetic actuation system

    , Article 4th International Conference on Manipulation, Automation, and Robotics at Small Scales, MARSS 2019, 1 July 2019 through 5 July 2019 ; 2019 ; 9781728109473 (ISBN) Yousefi, M ; Moradi, A ; Nejat Pishkenari, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    A magnetic actuation system is a promising tool for untethered manipulation at the microscale that medical treatment can benefit from. This paper proposes a new magnetic actuation system that comprises of two coaxial coils on a rotary table. A fixed workspace is placed between coils. The proposed system is able to generate magnetic force with desired direction and magnitude in a plane. The conducted simulation and experiment confirm the capability of the proposed system to control the position of the microrobot. © 2019 IEEE  

    Dynamic modeling and optimal control of a novel microswimmer with gimbal based disks

    , Article Robotica ; Volume 39, Issue 8 , 2021 , Pages 1468-1484 ; 02635747 (ISSN) Nickandish, A ; Pishkenari, H. N ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    We have introduced a new low-Reynolds-number microrobot with high 3D maneuverability. Our novel proposed microrobot has a higher rank of the controllability matrix with respect to the previous microswimmers which makes it capable of performing complex motions in space. In this study, governing equations of the microswimmer's motion have been derived and simulated. Subsequently, we have proposed a cascade optimal control technique to control the swimmer trajectory. In the proposed control scheme, the actuation is provided in a way that an exponential stability on the system trajectory error as well as minimum fluctuations of control signals are achieved. © The Author(s), 2021. Published by... 

    Modeling and velocity control of a-shape microrobot with adaptive neural network controller

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 4A, issue , 2014 Nojoumian, M. A ; Shirazi, M. J ; Vossoughi, G. R ; Salarieh, H ; Sharif University of Technology
    Abstract
    Design and control of micro robots have been one of the interesting fields in robotics in recent years. One class of these micro robots is the legged robots. Various designs of legged robots have been proposed in the literature. All designs rely on friction for locomotion. In this paper dynamic model of a planar two-legged micro robot is presented using Luger friction model, and an adaptive neural controller used to control the robot to improve robustness and velocity of the robot. As mentioned earlier, friction plays an important role in locomotion of the legged robots. However, especially in legged micro robots, it is difficult to model the frictional force correctly since environmental... 

    Locomotion modes of a novel piezo-driven microrobot: Analytical modeling and performance evaluation

    , Article Mechanism and Machine Theory ; Volume 52 , 2012 , Pages 248-266 ; 0094114X (ISSN) Eigoli, A. K ; Vossoughi, G. R ; Sharif University of Technology
    2012
    Abstract
    This paper presents a novel, sliding, A-shaped microrobot with nanometric resolution for precision positioning applications. The microrobot is actuated near its natural frequency using a piezoelectric stack actuator to produce translational motion. The dynamic modeling of the mechanism is based on the assumptions of the linear piezoelectric behavior and the Coulomb friction model. Using this model the required condition for generating net motion is found. The suitability of three simple, friction-based locomotion modes for implementation on the proposed device is addressed. Influences of some important configuration parameters on the behavior of the microrobot, based on defined criteria, are... 

    Modeling of a planar microrobot using lugre friction model

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010 ; Volume 8, Issue PARTS A AND B , November , 2010 , Pages 633-639 ; 9780791844458 (ISBN) Khodabakhsh, M ; Vossoughi, G. R ; Kamali, A ; Sharif University of Technology
    2010
    Abstract
    Microrobots design and manufacturing has been one of interesting fields in robotics in recent years. Various legged designs have been proposed in the literature. All designs rely on friction for locomotion. In this paper the dynamic model of a planar two-legged microrobot is presented using LuGre friction model. LuGre friction model is more realistic model, reducing uncertainties of the microrobot dynamic model, providing a better prediction for both design and control applications. The proposed microrobot is driven by a piezoelectric actuator mounted between centers of two legs. One of important issues in modeling of microrobots is to determine the friction force between robot and... 

    Optimal controller design for 3D manipulation of buoyant magnetic microrobots via constrained linear quadratic regulation approach

    , Article Journal of Micro-Bio Robotics ; Volume 15, Issue 2 , 2019 , Pages 105-117 ; 21946418 (ISSN) Pedram, A ; Nejat Pishkenari, H ; Sitti, M ; Sharif University of Technology
    Springer  2019
    Abstract
    We consider magnetic actuation and control of a spherical neutrally buoyant magnetic microrobot via magnetic coil setups and seek to design an optimal controller to reduce the required energy and coils’ currents. We showed that in currently employed setups, where the actuation frequency is few tens of Hertz, the nonlinear dynamics of the system can be well approximated by a set of linear constrained ones. The approximated model is obtained by consciously overlooking the rotational dynamics and the inertia terms in translational dynamics. We acquired the linear quadratic regulation (LQR) controller for the approximated model which is a constrained time-varying system. Finally, 3D manipulation... 

    Independent control of multiple magnetic microrobots: design, dynamic modelling, and control

    , Article Journal of Micro-Bio Robotics ; Volume 16, Issue 2 , 27 June , 2020 , Pages 215-224 Khalesi, R ; Nejat Pishkenari, H ; Vossoughi, G ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Swimming microrobots have a variety of applications including drug delivery, sensing, and artificial fertilization. Their small size makes onboard actuation very hard, and therefore an external source such as the magnetic field is a practical way to steer and move the robot. In this paper, we have designed a novel microrobot steered by magnetic paddles. We have also discussed design parameters where, based on the conducted simulation, the robot speed reaches 520 um/s. It is shown that the microrobot speed depends on the robot paddle dimensions. According to the microrobots motion characteristics and their different reactions to the same input, we have designed a steering strategy for... 

    Dynamics and control of a novel microrobot with high maneuverability

    , Article Robotica ; Volume 39, Issue 10 , 2021 , Pages 1729-1738 ; 02635747 (ISSN) Esfandbod, A ; Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    In this study, we introduce a novel three-dimensional micro-scale robot capable of swimming in low Reynolds number. The proposed robot consists of three rotating disks linked via three perpendicular adjustable rods, actuated by three rotary and three linear motors, respectively. The robot mechanism has an important property which makes it superior to the previously designed micro swimmers. In fact, our goal is designing a micro swimmer which its controllability matrix has full rank and hence it will be capable to perform any desired maneuver in space. After introducing the mechanism and derivation of the dynamical equations of motion, we propose a control method to steer the robot to the... 

    Predicting average velocity of a non-linear sliding microrobot

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 225, Issue 9 , 2011 , Pages 2044-2051 ; 09544062 (ISSN) Eigoli, A. K ; Vossoughi, G. R ; Sharif University of Technology
    2011
    Abstract
    Among the locomotion concepts employed in the microrobotics, friction-based locomotion principles are of considerable importance. In this study, the dynamic modelling of friction drive microrobots subjected to the tangential and normal excitations is investigated, which have the same frequency, but are shifted in phase. The motion equation of the microrobot reveals a strongly non-linear differential equation with discontinuity for which the elastic force term is proportional to a signum function. Using the homotopy perturbation method, simple expressions are derived for predicting average velocity of the slider. The obtained results are in good agreement with those achieved from numerical... 

    Performance analysis of lattice-reduction algorithms for a novel LR-compatible K-Best MIMO detector

    , Article Proceedings - IEEE International Symposium on Circuits and Systems ; 2011 , Pages 701-704 ; 02714310 (ISSN) ; 9781424494736 (ISBN) Youssef, A ; Shabany, M ; Gulak, P. G ; Sharif University of Technology
    Abstract
    Lattice Reduction (LR) has been proposed as a method to enhance the performance of MIMO detectors such as ZF, MMSE and V-BLAST. Until recently, the application of LR to the superior K-Best tree-search detection algorithm was not practical due to the significant increase in complexity of K-Best as a result of the distortion of tree symmetry caused by LR. However, in our recently published work we developed an innovative K-Best algorithm to accommodate tree-asymmetry with no additional complexity. In this work, we build on this result and perform a detailed analysis of the effect of various LR algorithms on the performance of LR-aided K-Best. We show that LLL and Seysen provide equivalent... 

    A periodic solution for friction drive microrobots based on the iteration perturbation method

    , Article Scientia Iranica ; Volume 18, Issue 3 B , 2011 , Pages 368-374 ; 10263098 (ISSN) Kamali Eigoli, A ; Vossoughi, G. R ; Sharif University of Technology
    2011
    Abstract
    The friction drive principle, which is based on the superposition of two synchronized perpendicular vibrations at the interface of the robot and the work floor, plays a fundamental role in the locomotion of miniaturized robots. In this paper, the iteration perturbation method proposed by He is used to generate a periodic solution for this type of friction drive microrobot. The equation of motion for the system reveals a parametrically excited oscillator with discontinuity, the elastic force term for which is proportional to a signum function. The obtained solutions are in excellent agreement with those achieved from numerical integration and experiments reported in the literature. Results... 

    Dynamic modeling of stick-slip motion in a legged, piezoelectric driven microrobot

    , Article International Journal of Advanced Robotic Systems ; Volume 7, Issue 3 , September , 2010 , Pages 201-208 ; 17298806 (ISSN) Kamali Eigoli, A ; Vossoughi, G. R ; Sharif University of Technology
    2010
    Abstract
    The motion of a stick-slip microrobot propelled by its piezoelectric unimorph legs is mathematically modeled. Using a continuously distributed mass model for the robot's body, the working equation of the mechanism is derived based on the assumption of linear Euler-Bernoulli beam theory and linear piezoelectric behavior. Moreover, the required condition for generating net motion is calculated in terms of physical characteristics of the microrobot. It is demonstrated that the higher the friction constant, then a lower average speed is obtained. Also, it is shown that a microrobot with heavier legs can move in a rougher environment. Regardless of the mass proportion between robot's main body... 

    Motion analysis of a vibrational microrobot with two perpendicular harmonic actuators and deriving the design parameters in stick-slip mode

    , Article Journal of Computational and Nonlinear Dynamics ; Volume 11, Issue 2 , 2016 ; 15551415 (ISSN) Jalili, H ; Vossoughi, G ; Salarieh, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    In this paper, the stick-slip motion of a microrobot with two perpendicular vibrational actuators is studied. This motion is based on the friction drive principle. To determine the effective parameters in the motion of microrobot, the equations of motion of the microrobot are derived. To simplify the equations for determining the design parameters, the vibrational actuators are modeled with two perpendicular harmonic forces. To study the motion dynamics of the microrobot, its equation of motion is derived in a nondimensional expression by defining the nondimensional effective parameters. The Fourier expansion (F.E.) method is used to analyze the numerical results and it showed some... 

    Dynamic modeling, optimized design, and fabrication of a 2DOF piezo-actuated stick-slip mobile microrobot

    , Article Mechanism and Machine Theory ; Volume 133 , 2019 , Pages 514-530 ; 0094114X (ISSN) Asmari Saadabad, N ; Moradi, H ; Vossoughi, G. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper proposes an optimized design for a 2DOF linear-motion mobile microrobot. The forward motion of the microrobot is achieved by simultaneous excitation of the vertical and horizontal oscillators that create the stick-slip locomotion. Dynamic equations of motion for the microrobot are derived and simplified based on Coulomb friction. The horizontal and vertical elements are connected to the main mass by piezoelectric actuators and are set in oscillatory motion by applying a harmonic voltage to the actuators. The design parameters, including the perpendicularly-mounted masses, frequency, and phase difference of the excitations are tuned in order to achieve high locomotion velocity and...