Loading...
Search for: deep-reactive-ion-etching
0.003 seconds

    Design and fabrication of a micro-opto-mechanical-systems accelerometer based on intensity modulation of light fabricated by a modified deep-reactive-ion-etching process using silicon-on-insulator wafer

    , Article Journal of Vacuum Science and Technology B ; Volume 40, Issue 4 , 2022 ; 21662746 (ISSN) Gholamzadeh, R ; Gharooni, M ; Salarieh, H ; Akbari, J ; Sharif University of Technology
    AVS Science and Technology Society  2022
    Abstract
    Accelerometers that work based on intensity modulation of light are more sensitive, economically feasible, and have a simpler fabrication process compared to wavelength modulation. A micro-opto-electro-mechanical-system accelerometer based on intensity modulation of light is designed and fabricated. A movable shutter that is attached to the proof mass is designed to change the intensity of light. Moreover, the mechanical part is designed to improve the overall sensitivity and linear behavior in the measurement range. The designed accelerometer is fabricated by a deep-reactive-ion-etching (DRIE) process. The DRIE process used in this report is based on a Bosch-like process, which uses SF 6... 

    Design, simulation and fabrication of a MEMS accelerometer by using sequential and pulsed-mode DRIE processes

    , Article Journal of Micromechanics and Microengineering ; Volume 27, Issue 1 , 2017 ; 09601317 (ISSN) Gholamzadeh, R ; Jafari, K ; Gharooni, M ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    A sensitive half-bridge MEMS accelerometer fabricated by sequential and pulsed-mode processes is presented in this paper. The proposed accelerometer is analyzed by using conventional equations and the finite element method. The micromachining technology used in this work relies on two processes: sequential and pulsed-mode. In the sequential deep reactive ion etching process, a mixture of hydrogen and oxygen with a trace value of SF6 is used instead of polymeric material in the passivation step. The pulsed-mode process employs periodic hydrogen pulses in continuous fluorine plasma. Because of the continuous nature of this process, plus the in situ passivation caused by the hydrogen pulses,...